请使用支持JavaScript的浏览器! Fluorescent Nucleoside Triphosphates for SingleMolecule Enzymology_蚂蚁淘,【正品极速】生物医学科研用品轻松购|ebiomall -蚂蚁淘商城
当前位置: > 首页 > 技术文章 >
Fluorescent Nucleoside Triphosphates for SingleMolecule Enzymology
来自 : 蚂蚁淘

By:ChristopherP.Toseland12Contact Information,MartinR.Webb1
Affiliation(s):(1)MRCNationalInstituteforMedicalResearch,London,UK(2)InstitutfürZellulärePhysiologie,PhysiologischesInstitut,LudwigMaximiliansUniversität,Munich,Germany
BookTitle:SingleMoleculeEnzymology:MethodsandProtocols
Series:MethodsinMolecularBIOLOGy|Volume:778|Pub.Date:Aug-31-2011|PageRange:161-174|DOI:10.1007/978-1-61779-261-8_11
Subject:Biochemistry
Theinterconversionofnucleosidetriphosphate(NTP)anddiphosphateoccursinsomeofthemost­importantcellularreactions.Itiscatalyzedbydiverseclassesofenzymes,suchasnucleosidetriphosphatases,kinases,andATPsynthases.Triphosphatasesincludehelicases,myosins,andG-proteins,aswellasmanyotherenergy-transducingenzymes.Thetransferofphosphatebykinasesisinvolvedinmanymetabolicpathwaysandincontrolofenzymeactivitythroughproteinphosphorylation.Tounderstandtheprocessescatalyzedbytheseenzymes,itisimportanttomeasurethekineticsofindividualelementarystepsandconformationchanges.Fluorescentnucleotidescandirectlyreportonthebindingandreleasesteps,andconformationalchangesassociatedwiththeseprocesses.Insingle-moleculestudies,fluorescentnucleotidescanallowtheirroletobeexploredbyfollowingpreciselythetemporalandspatialchangesintheboundnucleotide.Here,theselectionoffluorophoresandnucleotidemodificationsarediscussedandmethodsaredescribedtoprepareATPanalogswithexamplesoftwoalternatefluorophores,diethylaminocoumarinandCy3.
KeyWords:Fluorescentnucleotides-ATP-GTP-Motorproteins-TIRFmicroscopy

1Introduction

TheconversionsofATPtoADPandGTPtoGDParemediatedbyawiderangeofenzymes.Theseincludemotorproteinssuchasmyosins,helicases,andkinesins,alongwithproteinsfromsignalingpathways,suchaskinasesandG-proteins.Withrespecttomanymotorproteins,theenergyfromtheATPhydrolysisiscoupledtochangesinproteinconformation,and/orprotein–trackinteractions,enablingfunctionssuchasmusclecontraction,DNAunwinding,andmodulationofprotein–proteininteractions.

Fluorescencenucleotidesarewidelyappliedtoinvestigatesolutionkineticsofsuchtriphosphatasesandkinases.Forexample,theyareusedtomeasurethekineticsofindividualstepsintheenzymicreaction(binding,hydrolysis,productrelease,andassociated­structuralchanges)andtounderstandfullyhowsuchactivitiesarecoupledtotheproteinfunction.Insuchmeasurements,achangeinthefluorescencepropertiesisrequiredtogiveasignalassociatedwiththeprocessofinterest.Mostoften,thischangeisinintensity,butotherpropertiessuchasanisotropyarealsoused.Importantly,significantfluorescencechangesaremoreimportantinthistypeofusethanoverallfluorophorebrightness.Inaddition,fluorophorephotobleachingisusuallynotamajorproblem,aslightsourcescanbeoflowerintensitythanthoseforsingle-moleculevisualization,describedbelow.

Theuseoffluorescentnucleotidesinsingle-moleculeassayshasincreasedoverthepast15years,andthishasbeenespeciallydrivenbythestudyofmotorproteins,inwhichthereisapreciserelationshipbetweenmovementandnucleotidehydrolysis.Totalinternalreflectionfluorescencemicroscopy(TIRFM)isreADIlyusedtovisualizeindividualfluorescentATPandADPmoleculesallowingthemeasurementsofATPturnoversbysinglemyosinmolecules(14).Forsuchmeasurements,abright,photostable,fluorophoreisamajorfactor:thelightsourcesmustbeintensetogetsufficientphotonsemittedfromsinglecomplexes.Morerecently,single-moleculefluorescencemeasurementshavebeencombinedwithtranslocationmeasurementstoshowthecouplingbetweenATPaseactivityandtranslocationalongactin(4).TIRFMselectivelyexcitesmoleculeswithin100–200nmofthesurface,dramaticallyreducingthebackgroundfluorescencefromunboundfluorophoresinthebulksolution.Thisimprovementinthesignal-to-noiseratioallowsdetectionofindividualfluorescentATPmolecules,whenboundtosurface-attachedproteins.However,thepossibilityoffurtherimprovementinthesignal-to-noiseratio,throughafluorescenceintensityincreaseonproteinbinding,couldimproveeitherthespatialortemporal,resolutionofmeasurements.Thischapterconsidersonlytheuseoffluorescenceintensitymeasurementsofasinglefluorophoreonthenucleotide.However,developmentssuchasspFRET(single-particleFörsterResonanceEnergyTransfer)(5)hasclearpotentialtoextendtheapplicationsoffluorescentnucleotides.

Inthischapter,theselectionofthefluorophoresandtypesofnucleotidemodificationsarediscussed.Twoexamplesyntheses,purifications,andcharacterizationsaredescribedthatresultinfluorescentadducts,differingbothinthetypeoffluorophoreandinthelinkagebetweenthefluorophoreandnucleotide.ThestructuresofthetwoadductsareshowninFig.1.
MediaObjects/189841_1_En_11_Fig1_HTML.gif
Fig.1.Fluorescentnucleotideanalogs.(a)Deac-aminoATPand(b)Cy3-edAATP.

1.1SelectionoftheLabelingPosition

Fluorescentadenineandguaninenucleotideshavebeenwidelyusedtoreportuponbinding,proteinreleaseandstructuralchanges(611).Fluorophoresaresensitiveprobes,easilyusedatsubmicromolarconcentrations,andcanhavepropertiesthatreportrapidly,evenonsmallperturbationsintheregionofthefluorophore.Thus,ATPandanalogshavebeenmodifiedwithfluorophoresatseverallocationsinthemolecularstructureandtherangeofmodificationshasbeenreviewed(12,13).Thechoiceofattachmentsiteisimportant,bothtogetafluorophoreinapositiontoreportbutalsotomodifytheparentnucleotidewithoutsignificantperturbationofthebiochemicalproperties.First,thepurinebasecanbemadefluorescenteitherbymodificationorbyusingafluorescentanalogofthenaturalbase,asinthecaseofformycintriphosphate(FTP)(8).However,suchmodificationsmaydisrupttheprotein–nucleotideinteractions,asthereisoftenhighselectivityinthebasebindingsiteofproteins(13).Thephosphatechaincanalsobemodified,aswithγ-AMNS-ATPforinvestigationsofEscherichiacoliRNApolymerase(14),butthesemodificationsfrequentlydisruptthecleavage­stepbypreventing­correctbindingofthephosphatesorbyblocking­accesstotheγ-phosphate.Ribosemodificationsareoftenthemostsuccessful,wherebytheanalogcloselymimicstheactivityofATP.InmanyenzymesthatbindGTPorATP,the2′-and/or3′-hydroxylgroupsoftheribosearepartlyexposedtotheproteinsurface,whilethebaseandphosphatesarewellburied.Thisallowsariboselabeltositattheentrancetothebindingsiteandpotentiallyreportonchangesinthatregion,withonlyasmalleffectonthebindingandcatalyticproperties.

1.2SelectionofFluorophore

Whenfluorescentanalogsaretobeusedformicroscopy,themaincriteriaforchoicesoffluorophorearehighfluorescenceintensity(highextinctioncoefficientandfluorescencequantumyield),excitationandemissionmaximabestsuitedtotheexcitationsource,withoutinterferencefromothercomponentsinthesystem,andstABIlityagainstphotobleaching.Withsomefluorophores,theextinctioncoefficientandparticularlythequantumyieldcanchangesignificantlywiththechemicalenvironmentofthefluorophore.Suchchangescanbeproblematicinchoosingasuitablefluorophore,butiftheintensitychangesaremonitored,thenchangesinintensitycanbeharnessed,asdescribedbelowforadiethylaminocoumarin.Long-wavelengthfluorophores,suchasthecyaninedyes(e.g.,Cy3),havegoodpropertiesforfluorescencemicroscopyandhavebeenusedfordetectingfluorescencefromsinglemolecules.Typically,fluorophoresthatexciteatlongerwavelengthsarerelativelylargemoietieswithmultiringstructuresandmayhavesignificantlyhydrophobicregions.Thismayleadtononspecificbindingtoproteinsandsurfaces.Therearenowmanycommerciallyavailablefluorophore-labelingreagentsthatgivevariationsonquantumyield,photostability,andwavelengths.Adiscussionofthisvarietyisoutsidethescopeofthischapter.ForadditionalinformationandforcommercialsourcesofsuchlabelsaswellasATPanalogssee:http://www.Invitrogen.com,http://www.sigmaaldrich.com,http://www.Roche-applied-science.comandhttp://www.jenabioscience.com.Quantumdotshavesignificantpotentialforfutureuse,buttheirlargesizerelativetonucleosidetriphosphatesislikelytomakethemdifficulttoapplygenerallyhere.

1.3SelectionoftheLinkerBetweenNucleotideandFluorophore

Asdescribedabove,labelingattheribosehydroxylgroupshasbeenusefulbecausethismodificationmaynotleadtolargeperturbationsofthebiochemicalproperties.However,suchlabelingofthehydroxylgroupsleadstotheformationofamixtureof2′-and3′-isomers,whosebiochemicalandfluorescentpropertiesmaydifferwhenbound(13).Thisproblemcanbecircumventedbyusingaparentnucleotide,inwhichonlyonehydroxylisavailableformodification,forexamplethecommerciallyavailable2′-deoxyATP,orthesynthetic3′-amino-3′-deoxyATP(15).Alternatively,theisomersofsomelabelednucleotidesinterconvertonlyveryslowlyandcanbesuccessfullyseparatedbychromatographyandstoredassingleisomers(3,16).

Asmentionedintheabovesection,fluorophoresforfluorescencemicroscopyarerelativelylargeandsomaydisruptthebiochemicalcycle.Toamelioratethisproblem,severallinkersareavailabletospacethefluorophoresfurtherawayfromthecatalyticsite.Essentially,azero-lengthlinkerisachievedbydirectlabelingoftheaminegroupontheriboseringof3′-amino-3′-deoxyATP.Longerchemicallinkerscanusedifferentlengthsofdiamino-n-alkanes,suchas2′(3′)-O-[N-(2-aminoethyl)-carbamoyl]ATP(edaATP(17))and2′(3′)-O-[N-(3-aminopropyl)carbamoyl]ATP(pdaATP(15)).Insomecases,includingCy3,thecommerciallyavailablelabelsincludeaspacerchainbetweenthefluorophoreandthereactivegroupusedforattachment.Inthesecases,thefluorophorewillbepositionedfurtherawayfromtheproteinand,therefore,shouldnotinterferesignificantlywiththenucleotideassociationandcatalysis.However,movingthefluorophorefurtherawayfromtheproteinmayreduceanychangestofluorescentpropertiesonbinding.Allmodificationsmaybedeleterioustotheenzymicactivity,andtherefore,itisimportanttoassesstheimpactofthesechanges.Methodstoassesstheseeffectsaredescribedlater.

1.4OtherConsiderations

TherequirementsforthesynthesisofATPanalogsvarywidely.Thosedescribedherearerelativelysimplelabelingreactions,performedunderaqueousconditions,sopotentiallyhighyieldscanbeobtainedusingconditionsandequipmentavailableinmostlaboratories.Thesuccessofthelabelingdependsbothonthechemicalreactionsperseandonthepropertiesofthefluorophore.Forexample,veryhydrophobicgroupsmayimpairthesuccessofareactionthatoccursperfectlywellwithsimplerlabels.Thepurificationoftheproductalsomaydependonthephysicalpropertiesofthefluorescentlabel.TwospecificexamplesaredescribedforthelabelingnucleotidesattheriboseringwithCy3anddiethylaminocoumarin(Fig.1).

Thevisualizationofthebindingoffluorescentnucleotidestoproteinsbylightmicroscopehasbeenlimitedbytechnicalproblemssuchasthenonspecificbindingofthefluorescentnucleotidetothecoverslip.Thishaslimitedthemaximumnucleotideconcentrationthatcouldbeusedwithanalogssuchas2′(3′)-(Cy3-O-[N-(2-aminoethyl)carbamoyl])ATP(Cy3-edaATP,Fig.1b(3))to<100nM.Fluorescentgroupsmayalsobindtomacromoleculessuchasproteins,independentlyofthenucleotideanditsbindingsite,andparticularlyifusedathighconcentration.Acontrol,suchasdisplacingthelabeledwithunlabelednucleotide,willtestifsuchnonspecificbindingoccurs.

ThefluorescentATPanalog,(3′-(7-diethylaminocoumarin-3-carbonylamino)-3′-deoxyadenosine-5′-triphosphate(deac-aminoATP))(Fig.1a)hasalowquantumyieldwheninsolution,butthisincreasesdramaticallywhenboundtosomeproteins.Thisgenerateslargefluorescencechanges,suchasthe20-foldincreasewhenboundtomyosinVa(18).Thisenablesadistinctionbetweencoverslipbound“background”moleculesandthoseboundbyproteins(4),whichmaycompensatefortherelativelylowoptimalexcitationwavelengthandphotostability.


2Materials
2.1Labeling
1.
2′,3′-O-(2-Aminoethyl-carbamoyl)-adenosine-5′-triphosphate(edaATP)(JenaBiosciences)(seeNote1).
2.
3′-Amino-3′-deoxyATPtriethylammoniumsalt(aminoATP)(15).
3.
Cy3N-hydroxysuccinimideester(NHS-ester)(GEHealthcare).
4.
7-Diethylaminocoumarin-3-carboxylicacid(Invitrogen).
5.
20mMSodiumbicarbonate,pH8.4.
6.
Dimethylformamide(DMF).
7.
Tributylamine.
8.
Isobutylchloroformate.
9.
HPLCsystem,preferablywithbothabsorbanceandfluorescencedetectors.
10.
Stronganionexchange(SAX)Partispherecolumn(0.4 × 10cm)(Whatman).
11.
0.4M(NH4)2HPO4adjustedtopH4.0withconcentratedHCl.
12.
HPLC-gradeMethanol.
13.
HPLC-gradeAcetonitrile.
2.2Purification
1.
DEAEcellulosecolumn(2 × 30cm).
2.
Triethylamine(technicalgrade).
3.
Glassdistillationapparatussuitableforupto500mland­havinggroundglassjoint.
4.
Boilingchips.
5.
Dryice.
6.
2-LBuchnerflask,withbungandplastictubingonthesidearm,connectedtoaglass-scintergasbubbler.
7.
Chromatographysystem(fractioncollector,gradientmaker,pump,etc.)at4°Cwithabsorbanceandfluorescencedetector,ifpossIBLe.
2.3Concentration
1.
Rotaryevaporator,equippedwithacoldfingercondenserandhigh-vacuumoilpump.
2.
Methanol(highestgradeavailable).
3.
Isopropanol(technicalgrade).
4.
Dryice.
2.4Characterization
1.
Spectrophotometer.
2.
HPLCsystem,preferablywithbothabsorbanceandfluorescencedetectors.
3.
Stronganionexchange(SAX)Partispherecolumn(0.4 × 10cm)(Whatman).
4.
0.4M(NH4)2HPO4,pH4withconcentratedHCl.
5.
HPLC-grademethanol.
6.
HPLC-gradeacetonitrile.
7.
Fluorescencespectrophotometer.
2.5ATPaseAssay
1.
MDCC-PBP(19).Phosphatebindingprotein(A197C)fromE.coli,labeledwith(N-[2-(1-maleimidyl)ethyl]-7-diethylaminocoumarin-3-carboxamide)(Invitrogen)(seeNote2).
2.
Rhodamine-PBP(20).Phosphatebindingprotein(A17C,A197C)fromE.coli,labeledwith6-iodoacetamidotetramethylrhodamine(seeNote2).
3.
Fluorescencespectrophotometer.
4.
Inorganicphosphatestandardsolution.

3Methods
3.1SynthesisofCy3-edaATP

ThismethodisbasedonthatdescribedbyOiwaetal.(3)andgivesmixed(2′,3′)isomers(Fig.1b).

3.1.1Labeling

1.
Mix4μmolCy3NHS-esterwith20μmoledaATPin20mMsodiumbicarbonate,pH8.4,for1hatroomtemperature(seeNote3).
2.
AnalyzethereactionmixtureusingHPLCtoconfirmtheformationofCy3-edaATP.EquilibrateaPartisphereSAXcolumnwith0.4M(NH4)2HPO4with20%(v/v)methanol:flowrateof1ml/minatroomtemperature(seeNotes4and5).
3.
Addanaliquotofthereactionmixture(1–10nmol)to100μLoftherunningbuffer.
4.
Injectthesolutionontothecolumn.
5.
Followtheabsorbanceat254nmandfluorescencewithexcitationof550nmandemissionof570nm.ThechromatogramwillshowtheelutionofCy3NHS-ester,edaATP,andCy3-edaATP,respectively(seeNote6).
6.
InjectknownstandardsofCy3NHS-esterandedaATPatthesameconcentrationasthereactionmixturetoidentifypeaks.

3.1.2PreparationofTriethylammoniumBicarbonateSolution

1.
Distiltriethylamine(500ml),discardingthefirstandlast10%ofthedistillate.Usethemiddle80%ofthedistillate(seeNote7).
2.
Addcold(4°C),distilled,deionizedwaterto139.4mldistilledtriethylaminetogive1Lofa1Msolution(seeNote8).
3.
Inafumehood,putdryiceintheBuchnerflask,andwiththesolutioninice,bubbleCO2throughthesolutionuntilthepHis7.5–7.6(approximately2h)usingthescinteredglassbubbler.KeeptheBuchnerflask,containingthedryice,raisedabovethesolutiontoreducetheriskofsuckingback.
4.
Storetriethylammoniumbicarbonate(TEAB)at4°Cinawell-stopperedcontainer.Itlastsapproximately1–2months,butthepHgraduallyriseswithtime.Inthiscase,rebubbleCO2throughit.

3.1.3PurificationofNucleotide

1.
PreequilibratetheDEAE-cellulosecolumnwith10mMTEAB,pH7.6at1ml/minat4°C.
2.
AlterthepHofthereactionmixtureto7.6usingacidorbase,reducetheconductivitybydilutioninwatersoitisclosetothatof10mMTEABandloadontothecolumn.
3.
Washthecolumnwith10mMTEAB,pH7.6ataflowrateof1ml/minuntilnomorepinkmaterialiseluted.
4.
Elutethenucleotidewithalineargradientof10–800mMTEAB(totalvolume600ml).Followtheabsorbanceat254nm.UnreactededaATPiselutedfirstfollowedbyCy3-edaATP(seeNote9).
5.
IdentifythefractionscontainingCy3-edaATPbymeasuringtheabsorbanceat550nmand260nm.

3.1.4Concentration

1.
PoolfractionscontainingCy3-edaATPandremoveTEABbyrotaryevaporation.Useaflaskwithacapacityatleastfourtimesthevolumeofthesolution.
2.
Fillthecondenserwithdryice–isopropanol.
3.
Addthepooledfractionstotheflask,rotate,andslowlyapplythevacuumtobeginevaporation.Warmtheflaskinawaterbathat30°C.Reducethevolumeto∼5ml.Whenthesolution­volumeisreducedto10–20%,frothingmaybegin(seeNote10).
4.
Addmethanol(∼10%ofinitialsolutionvolume)andrepeattheevaporation.
5.
Repeatmethanoladditionsandevaporationthreetimes:­duringthisitshouldbepossibletoremoveessentiallyallthesolventbeforeaddingmoremethanol.Atthefinalstage,evaporateallofthemethanol.TheCy3-edaATPwillremainasagum.
6.
Dissolvein<3mlmethanolandtransfertoapearflask(10ml)andreconcentrate,withverycarefulapplicationofthevacuumtoavoidfrothing.Finally,dissolveinwaterorbufferandadjusttopH ∼ 6–7beforestoringat−80°C(seeNote11).

3.1.5Characterization

1.
MeasuretheabsorbancespectraofCy3-edaATPin50mMTris–HCl,pH7.5between220and700nm.TakingtheextinctioncoefficientfortheCy3tobe150,000M−1cm−1at552nm(21)andtheextinctioncoefficientforadenosinetobe15,200M−1cm−1at260nm,calculatetheconcentrationofthenucleotide(seeNote12).
2.
CharacterizeCy3-edaATPbyHPLCusingthesamemethodasabove.ThemajorpeakshouldbeCy3-edaATP.CheckforthepresenceofCy3-edaADP,edaATP,andedaADP.DeterminethepuritybyintegratingtheCy3-edaATPpeakwithanyotherpeaks(seeNote13).
3.
MeasurethefluorescenceexcitationandemissionspectrumofCy3-edaATPin50mMTris–HCl(pH7.5).Typically,1μMinasolutionof60μlwillbeused.Usethepeakwavelengthfromtheabsorbancemeasurementastheexcitationwavelengthtomeasuretheemission.Then,usethepeakintheemissionspectrumfortheexcitationspectrum.Addanexcessoftheproteinofinteresttothesample(e.g.,10-fold)andrepeatthemeasurement(seeNotes14and15).Comparethetwospectratodeterminethechangeinfluorescencewhenboundtoprotein.

3.1.6GeneratingCy3-edaADP

1.
Cy3-edaADPcanbeobtainedbyhydrolysisofCy3-edaATP.AddthedesiredconcentrationofCy3-edaATP(e.g.,100μM)torabbitskeletalmusclemyosin(1mg/ml)in1mMMgCl2,0.2mMdithiothreitol(DTT),and10mMTris–HCl,pH7.0.4°Cfor2h(seeNote16).
2.
Centrifugethesampleat235,000 ´ gat4°Ctoremovethemyosin.
3.
AnalyzetheproductusingHPLC,asdescribedabove.
4.
Storethesupernatantat−80°C.
3.2SynthesisofDeac-aminoATP

ThismethodisbasedonthatdescribedbyWebbetal.(15)andgivesasingleproductasreactionoccursonlyatthe3′-amine(Fig.1a).

3.2.1Labeling

Thismethodrequiresthestartingmaterial3′-amino-3′-deoxy­­ATP(15).
1.
Activate7-diethylaminocoumarin-3-carboxylicacid(16.4mg,62.8μmol)bydissolvingindryDMF(1ml),coolingitonice,andaddingtributylamine(25μl,103μmol)andisobutylchloroformate(10μl,77μmol).
2.
Leavethereactionmixtureonicefor50min.
3.
Add3′-amino-3′-deoxyATP(40μmol,triethylammoniumsalt)inwater(300μl)totheactivatedcoumarinandstiratroomtemperaturefor2h.
4.
AnalyzethereactionmixtureusingHPLCtoconfirmtheformationofdeac-aminoATP.EquilibrateaPartisphereSAXcolumnwith0.4M(NH4)2HPO4with5%(v/v)acetonitrileataflowrateof1.5ml/minatroomtemperature.
5.
Addanaliquotofthereactionmixture(1–10nmol)to100μloftherunningbuffer.
6.
Injectthesolutionontothecolumn.
7.
Followtheabsorbanceat254nmandfluorescencewithexcitation435nmandemission465nm.Elutiontimesareapproximately1.6minfor7-diethylaminocoumarin-3-carboxylicacid,3.5minfor3′-amino-3′-deoxyATP,and13minfordeac-­aminoATP(seeNote6).

3.2.2Purification

1.
ThereactionmixturewaspurifiedonaDEAE-cellulose­column.Equilibratethecolumnwith10mMTEAB,pH7.6at1ml/minat4°C.
2.
AlterthepHofthereactionmixtureto7.6usingacidorbase,reducetheconductivitybydilutioninwatersoitisclosetothatof10mMTEABandloadontothecolumn.
3.
Washthecolumnwith10mMTEAB,pH7.6ataflowrateof1ml/minfortwocolumnvolumes.
4.
Elutethenucleotidewithalineargradientof10–600mMTEAB(totalvolume1L).Followtheabsorbanceat254nm(seeNote17).UnreactedaminoATPiselutedfirstfollowedbydeac-aminoATP.

3.2.3Concentration

Theproductdeac-aminoATPisconcentratedasdescribedforCy3-edaATPandstoredat−80°C.

3.2.4Characterization

3.3AssesstheEffectsofModifications

ThemethoddescribeshereisforanATPaseorGTPase.ThisspecificexampleusesaDNAhelicaseBacillusstearoThermophilusPcrA.TheeasiestmethodtoprovideanoverallassessmentoftheeffectofanATPmodificationistomeasureasteady-stateATPaseassay.Shouldtherebeachangeinthesteady-stateparameters(greaterthan20%),thentheindividualstepsoftheATPcyclecouldbeinvestigated.Itiscommonforthediphosphateaffinitytoincreasewithmodificationstotheribosering(9,18,22,23).

Itisalsohighlyrecommendedthatafunctionalactivityassayisperformed,suchasmeasuringDNAunwindingbyaDNAhelicaseoraninvitromotilityassaywithmyosin.Thisisanalternateassessmentofthemodificationeffect:thelabelmayinterferewithonecriterionwhichmaynotbenoticeableintheother.
1.
Measuretheabsorbancespectraofdeac-aminoATPin50mMTris–HCl,pH7.5between220and700nm.Takingtheextinctioncoefficientforthecoumarintobe46,800M−1cm−1at429nmandforadenosinetobe15,200M−1cm−1at260nm,calculatetheconcentrationsofthenucleotide(seeNote12).
2.
Characterizedeac-aminoATPbyHPLCusingthesamemethodasabove.Themajorpeakshouldbedeac-aminoATP.Determinethepuritybyintegratingthedeac-aminoATPpeakwithanyotherpeaks.
3.
MeasurethefluorescencespectraasdescribedforCy3-edaATP,butusingthecorrespondingexcitationandemissionpeaksforthecoumarin(Fig.2).
MediaObjects/189841_1_En_11_Fig2_HTML.gif
Fig.2.Fluorescencechangeuponbindingofdeac-aminoADPtomyosinS1.Excess­myosinS1wasaddedtobindallnucleotides.Deac-aminoADP(0.3μM)wasexcitedat435nmand10μMS1wasadded.InsertshowsthetitrationofmyosinS1intoasolutionofdeac-aminoADP.Thishighlightstheneedtosaturatethenucleotidetodeterminethemaximumfluorescencechange.MyosinS1wasaddedtoasolutionof0.1μMnucleotide,andthefluorescencewasmonitoredat480nm,withexcitationat435nm.

4.
FollowthesameproceduredescribedfortheCy3-edaATPtogeneratethediphosphate.
1.
Prepareamixture(60μl)of2nMPcrAhelicase,500nMdT20oligonucleotideand10μMMDCC-PBP(or6IATR-PBP)inabuffercontaining50mMTris–HCl,pH7.5,3mMMgCl2and150mMNaCl.
2.
Recordthefluorescencebyexcitingat436nmandemissionat465nmforMDCC-PBP,orexcitation555nmandemission575nmfor6IATR-PBP.
3.
AddATPatvariousconcentrations(1mMto0.5μM)(seeNote18).
4.
Repeatthemeasurementsatthesameconcentrationsofdeac-aminoATPorCy3-edaATP(seeNote18).
5.
Performacalibrationofthefluorescencesignalusingknownconcentrationsofinorganicphosphate.
6.
ComparetheVmaxandKmvaluesforthenativeandmodifiednucleotides.

4Notes
1.
ItisalsopossibletosynthesizeedaATP(3,15,17).
2.
MDCC-PBPisavailablecommerciallyfromInvitrogen,butcannotbeusedwithdiethylaminocoumarin-labelednucleotidesbecausethefluorophoresarethesame.Similarly,6IATR-PBPcannotbeusedifafluorophorewithsimilarwavelengthsispresent,suchasCy3orotherrhodamine.
3.
UseanexcessofnucleotideoverCy3NHS-esterduetotheexpenseofthefluorophore.
4.
Filteranddegasthe(NH4)2HPO4andthenaddtheHPLCgrademethanol.
5.
Alternatively,thereactioncanbefollowedbythin-layerchromatographyonsilicaplates(13).
6.
Usingthefluorescencedetectionisapproximately100-foldmoresensitivethanabsorbance.Ifnecessary,absorbancepeakscanbecollected,theirfluorescencemeasuredinafluorimeter,andtheirfullabsorbancespectrummeasuredinaspectrometer.
7.
Donotstoredistilledtriethylamineforlaterusewithoutredistillation:itdecomposesonstorage.Itmaybepossibletousehigh-puritytriethylaminewithoutdistillation,buttriethylaminedoesformimpuritiesonstorage.ThedistillationensuresthatonlyvolatilecomponentsendupintheTEABsolution.
8.
Triethylamineitselfisonlypartiallymisciblewithwater:therewillbetwolayersinitially,whichbecomesasinglesolutionaftersomeCO2hasbeenabsorbed.
9.
Alternatively,followthefluorescenceofCy3usinganexcitationof550nmandemissionof570nm.
10.
Applyandremovethevacuumslowlytopreventthesolutionsplashingandfrothing,andsopassingintothecondenser.
11.
AliquottheATPintosmallamountsbeforefreezingtoavoidfreeze-thawcycles.ItisadvisabletocheckthepurityofthenucleotidebyHPLCperiodicallyduringlong-termstorage.
12.
Theratiobetweenthemolaramountofthefluorophoreandadenosineshouldbe∼1.Ifnot,thereislikelytobecontaminatingfluorophoreinthepreparation.
13.
Determinethelimitofsensitivityfortheinstrumentbyinjectingknownamounts.Typically,1%contaminationshouldbedetected;forexample,if10nmolisinjected,itshouldbepossibletodetect0.1nmol.Itispossiblethatagreateramountofnucleotidewillhavetobeinjected.
14.
Ideally,theadditionofexcessproteintothenucleotidesamplewouldleadtothemaximumpotentialsignalchange.However,thisisdependentontheaffinitybetweennucleotideandprotein.
15.
Unlesstheproteinhasalowhydrolysisrateconstant,ortheproteinrequiresanactivator,itislikelythatanyfluorescencechangeoccursduetotheformationofdiphosphate.Thediphosphatefluorescencechangeshouldbemeasuredindependently.
16.
ItisalsopossibletobeginthelabelingwithedaADPandrepeatthesameprotocolasdescribeabovetoproducethefluorescentdiphosphate.Inaddition,itispossibletouseotherATPasesorcommerciallyavailableglycerolkinasewithd-glyceraldehyde(albeitthatribose-modifiednucleotidesarepoorsubstratesforthiskinase)toachievethehydrolysisofthetriphosphate(24).TheresultingADPanalogispurifiedbyadesaltingcolumn(PD10)orrepeatingtheion-exchangechromatography.
17.
Alternatively,followthefluorescenceofthediethylaminocoumarinusinganexcitationof430nmandemissionof465nm.
18.
AvoiddilutingtheATPsamplestolowconcentrations.Use60×concentratedstocks.Byadding1μloftheATPtothe60μlreactionmixture,thecorrectATPconcentrationisachieved.
AcknowledgmentsWewouldliketothankthevariouscoworkers,whohavebeeninvolvedinsynthesisanduseoffluorescentnucleotidesandarecoauthorsofpublicationscitedhere.WethanktheMedicalResearchCouncil,UK(C.P.T.andM.R.W.)andEuropeanMolecularBiologyOrganization(C.P.T)forfinancialsupport.


1.Funatsu,T.,Harada,Y.,Tokunaga,M.,Saito,K.,andYanagida,T.(1995)ImagingofsinglefluorescentmoleculesandindividualATPturnoversbysinglemyosinmoleculesinaqueoussolution.Nature374,555–559.PubMedCrossRefChemPort
2.Ishijima,A.,Kojima,H.,Funatsu,T.,Tokunaga,M.,Higuchi,H.,Tanaka,H.,andYanagida,T.(1998)SimultaneousobservationofindividualATPaseandmechanicaleventsbyasinglemyosinmoleculeduringinteractionwithactin.Cell92,161–171.PubMedCrossRefChemPort
3.Oiwa,K.,Eccleston,J.F.,Anson,M.,Kikumoto,M.,Davis,C.T.,Reid,G.P.,Ferenczi,M.A.,Corrie,J.E.,Yamada,A.,Nakayama,H.,andTrentham,D.R.(2000)Comparativesingle-moleculeandensemblemyosinenzymology:sulfoindocyanineATPandADPderivatives.Biophys.J.78,3048–3071.PubMedCrossRefChemPort
4.Sakamoto,T.,Webb,M.R.,Forgacs,E.,White,H.D.,andSellers,J.R.(2008)DirectobservationofthemechanochemicalcouplinginmyosinVaduringprocessivemovement.Nature455,128–132.PubMedCrossRefChemPort
5.Ha,T.(2001)Single-moleculefluorescenceresonanceenergytransfer.Methods25,78–86.PubMedCrossRefChemPort
6.Henn,A.,Cao,W.,Hackney,D.D.,andDeLaCruz,E.M.(2008)TheATPasecyclemechanismoftheDEAD-boxrRNAhelicase,DbpA.J.Mol.Biol.377,193–205.PubMedCrossRefChemPort
7.Moore,K.J.,andLohman,T.M.(1994)KineticmechanismofadeninenucleotidebindingtoandhydrolysisbytheEscherichiacoliRep­monomer.2.Applicationofakineticcompetitionapproach.Biochemistry33,14565–14578.PubMedCrossRefChemPort
8.Rossomando,E.F.,Jahngen,J.H.,andEccleston,J.F.(1981)Formycin5′-triphosphate,afluorescentanalogofATP,asasubstrateforadenylatecyclase.Proc.Natl.Acad.Sci.USA78,2278–2282.PubMedCrossRefChemPort
9.Toseland,C.P.,Martinez-Senac,M.M.,Slatter,A.F.,andWebb,M.R.(2009)TheATPaseCycleofPcrAHelicaseandItsCouplingtoTranslocationonDNA.J.Mol.Biol.392,1020–1032.PubMedCrossRefChemPort
10.Woodward,S.K.,Eccleston,J.F.,andGeeves,M.A.(1991)Kineticsoftheinteractionof2′(3′)-O-(N-methylanthraniloyl)-ATPwithmyosinsubfragment1andactomyosinsubfragment1:characterizationoftwoacto-S1-ADPcomplexes.Biochemistry30,422–430.PubMedCrossRefChemPort
11.Phillips,R.A.,Hunter,J.L.,Eccleston,J.F.,andWebb,M.R.(2003)ThemechanismofRasGTPaseactivationbyneurofibromin.Biochemistry42,3956–3965.PubMedCrossRefChemPort
12.Cremo,C.R.(2003)Fluorescentnucleotides:synthesisandcharacterization.MethodsEnzymol.360,128–177.PubMedCrossRefChemPort
13.Jameson,D.M.,andEccleston,J.F.(1997)Fluorescentnucleotideanalogs:synthesisandapplications.MethodsEnzymol.278,363–390.PubMedCrossRefChemPort
14.Yarbrough,L.R.,Schlageck,J.G.,andBaughman,M.(1979)Synthesisandpropertiesoffluorescentnucleotidesubstratesfor­DNA-dependentRNApolymerases.J.Biol.Chem.254,12069–12073.PubMedChemPort
15.Webb,M.R.,Reid,G.P.,Munasinghe,V.R.,andCorrie,J.E.(2004)AseriesofrelatednucleotideanaloguesthataidsoptimizationoffluorescencesignalsinprobingthemechanismofP-loopATPases,suchasactomyosin.Biochemistry43,14463–14471.PubMedCrossRefChemPort
16.Webb,M.R.,andCorrie,J.E.(2001)Fluorescentcoumarin-labelednucleotidestomeasureADPreleasefromactomyosin.Biophys.J.81,1562–1569.PubMedCrossRefChemPort
17.Cremo,C.R.,Neuron,J.M.,andYount,R.G.(1990)Interactionofmyosinsubfragment1withfluorescentribose-modifiednucleotides.AcomparisonofvanadatetrappingandSH1-SH2cross-linking.Biochemistry29,3309–3319.PubMedCrossRefChemPort
18.Forgacs,E.,Cartwright,S.,Kovacs,M.,Sakamoto,T.,Sellers,J.R.,Corrie,J.E.,Webb,M.R.,andWhite,H.D.(2006)Kinetic­mechanismofmyosinV-S1usinganew­fluorescentATPanalogue.Biochemistry45,13035–13045.PubMedCrossRefChemPort
19.Brune,M.,Hunter,J.L.,Howell,S.A.,Martin,S.R.,Hazlett,T.L.,Corrie,J.E.,andWebb,M.R.(1998)Mechanismofinorganicphosphateinteractionwithphosphatebinding­proteinfromEscherichiacoli.Biochemistry37,10370–10380.PubMedCrossRefChemPort
20.Okoh,M.P.,Hunter,J.L.,Corrie,J.E.,andWebb,M.R.(2006)Abiosensorforinorganicphosphateusingarhodamine-labeledphosphatebindingprotein.Biochemistry45,14764–14771.PubMedCrossRefChemPort
21.Mujumdar,R.B.,Ernst,L.A.,Mujumdar,S.R.,Lewis,C.J.,andWaggoner,A.S.(1993)Cyaninedyelabelingreagents:sulfoindocyaninesuccinimidylesters.Bioconjug.Chem.4,105–111.PubMedCrossRefChemPort
22.Kurzawa-Goertz,S.E.,Perreault-Micale,C.L.,Trybus,K.M.,Szent-Gyorgyi,A.G.,andGeeves,M.A.(1998)LoopIcanmodulateADPaffinity,ATPaseactivity,andmotilityofdifferentscallopmyosins.TransientkineticanalysisofS1isoforms.Biochemistry37,7517–7525.PubMedCrossRefChemPort
23.Talavera,M.A.,andDeLaCruz,E.M.(2005)EquilibriumandkineticanalysisofnucleotidebindingtotheDEAD-boxRNAhelicaseDbpA.Biochemistry44,959–970.PubMedCrossRefChemPort
24.Webb,M.R.(1980)Amethodfordeterminingthepositionalisotopeexchangeinanucleosidetriphosphate:cyclizationofnucleosidetriphosphatebydicyclohexylcarbodiimide.Biochemistry19,4744–4748.PubMedCrossRefChemPort

相关酶学实验

    免责声明 本文仅代表作者个人观点,与本网无关。其创作性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不做任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
    版权声明 未经蚂蚁淘授权不得转载、摘编或利用其他方式使用上述作品。已经经本网授权使用作品的,应该授权范围内使用,并注明“来源:蚂蚁淘”。违反上述声明者,本网将追究其相关法律责任。
    相关文章