
Product Name | mCRAMP, mouseGLLRKGGEKIGEKLKKIGQKIKNFFQKLVPQPEQ |
Size | 1 mg |
Catalog # | AS-61305 |
US$ | $283 |
Purity | % Peak Area By HPLC ≥ 95% |
This cathelicidin-related antimicrobial peptide (mCRAMP) is the sole murine cathelicidin. mCRAMP expression in the intestinal tract is restricted to surface epithelial cells in the colon. mCRAMP shows antimicrobial activity against the murine enteric pathogen Citrobacter rodentium and destroys skin Candida albicans. | |
Detailed Information | ![]() ![]() |
Storage | -20°C |
References | Limura, M. et al. J. Immunol. 174, 4901 (2005); Lopez-Garcia, B. et al. J. Invest. Dermatol. 125, 108 (2005). |
Molecular Weight | 3878.7 |
GLLRKGGEKIGEKLKKIGQKIKNFFQKLVPQPEQ | |
Sequence(Three-Letter Code) | H - Gly - Leu - Leu - Arg - Lys - Gly - Gly - Glu - Lys - Ile - Gly - Glu - Lys - Leu - Lys - Lys - Ile - Gly - Gln - Lys - Ile - Lys - Asn - Phe - Phe - Gln - Lys - Leu - Val - Pro - Gln - Pro - Glu - Gln - OH |
Product Citations | Sakoulas, G. et al. (2014). Nafcillin enhances innate immune-mediated killing of methicillin-resistant Staphylococcus aureus. J Mol Med 92, 139. Subramanian, H. et al. (2013). β-Defensins activate human mast cells via Mas-Related Gene X2. J Immunol 191, 345. doi:10.4049/jimmunol.1300023.Kulkarni, MM. et al. (2011). Mammalian antimicrobial peptide influences control of cutaneous Leishmania infection.Cell Microbiol 13, 913. doi: 10.1111/j.1462-5822.2011.01589.x.Gregorio, J. et al. (2010). Plasmacytoid dendritic cells sense skin injury and promote wound healing through type I interferons. J Exp Med 207, 2921.Gable, JE. et al. (2009). Fluorescence and UV resonance Raman study of peptide−vVesicle interactions of human cCathelicidin LL-37 and its F6W and F17W mutants Biochem 48, 11264. doi: 10.1021/bi900996q.Schlamadinger, DE. et al. (2009). Toxins and antimicrobial peptides: interactions with membranes.SPIE Proceedings 7397 doi: 10.1117/12.827439.Gryllos, I. et al. (2008). Induction of group A Streptococcus virulence by a human antimicrobial peptide. PNAS 105, 16755. |
ebiomall.com






>
>
>
>
>
>
>
>
>
>
>
>
同原剂作用由氯金酸(HAuCL4)制备金颗粒直径0.8-500nm胶体金制备胶体金保存间较4℃保存6月或室温保存1-2月
胶体金做标记探针同用途选用胶体金直径范围同用于免疫快速检测胶体金颗粒直径范围般3-40nm间
胶体金粒表面层AuC12—粒表面带负电荷金颗粒表面包层物(蛋白)稳定保护金颗粒维持胶体稳定防止外电解质影响使粒相互凝聚
胶体金粒蛋白吸附作用取决于溶液pH值蛋白氨基酸净电荷取决于溶液pH值pH=pI蛋白溶液呈性pH=pI蛋白溶解度水化程度更容易吸附疏水金粒表面实际胶体金探针制备般胶体金调整pH=pI+0.5更利于结合更稳定
胶体金探针所用蛋白通三种机制于吸附于金颗粒表面:、金粒所带负电荷与蛋白部碱性氨基酸(赖氨酸精氨酸pH均于10)所带阳性电荷初相互吸引;二、蛋白通某些疏水性氨基酸残基(包括色氨酸)与金粒表面间疏水吸附作用;三、蛋白半胱氨酸或甲硫氨酸硫基与金粒间电共用共价键结合
用于制备胶体金探针蛋白需要进行前处理才能与金颗粒更结合未经处理蛋白质般说均含较高浓度盐高浓度盐往往干扰蛋白与胶体金吸附结合或导致胶体金粒凝聚所首先要除蛋白质溶液盐冻干蛋白或高浓度蛋白溶液蛋白凝聚聚同与胶体金粒结合影响探针灵敏度散蛋白单体蛋白前处理重要项处理标记使其蛋白具适量蛋白量(30kD)形蛋白复合体往往稳定量蛋白与其蛋白(BSA牛血清蛋白等)结合能制备稳定性更佳探针量影响探针灵敏度已知蛋白结构与性前提除性影响结构部提高标记灵敏度
二、免疫胶体金产品原理及应用
胶体金探针用单克隆抗体标记应用免疫层析制快速诊断产品具较高特异性且相稳定性高检测般5-10min读结相比其(ELISA需1-2hPCR需要间更)缩短检测间检测(组织液、血清、尿液、粪便等)需做非简单处理或做前处理即进行检测结颜色变化读取需要特别仪器设备
免疫胶体金快速检测试纸利用层析原理、双抗体夹或免疫竞争或间接应用检测物质特异性能与其发特异反应抗原或抗体并金颗粒显色剂达快速检测目
使用快速检测产品卡加孔加入待测利用层析原理断向另端层析随着层析进行本待测固定于测试线(T线)并颜色变化显示并照线(即控制线C线)确保检测效性
建议 这没有意义
也可以自己查阅资料
荧光微球免疫层析;将标记好的荧光微球重悬,喷涂在结合垫上,加样时为什么就像黏在结合垫上,没有层析呢,望各位老师提出宝贵的建议
中空玻璃微珠可以应用在很多材料领域中以提高或改善材料的耐水性、抗压强度、收缩率和冲击强度等。密度低,能制取较轻的部件;孔隙率和比表面低,珠体吸收树脂少,所以即使高量填充,粘度也不高;具有化学稳定性和惰性;良好的抗龟裂性能,最终的制品易于后处理,如钻孔、切割及打磨,这也是中空玻璃微珠较为容易破坏的另一个优点。由于中空玻璃微珠就象减震器一样,因此,产品的抗压强度及抗冲击强度也得以改善。由于中空玻璃微珠优先于树脂基体而破坏,降低了制品受冲击的程度。中空玻璃微珠也具有较好的绝缘性能,这一性能特别是在制品使用过程中遇到有热水冲击时,中空玻璃微珠和树脂便形成了互不连通的热传导绝缘层。最后,由于中空玻璃微珠的着色性不好,使得制品有些发白,但有时这也是优点,一方面可以降低白色颜料如钛白粉的用量,最多可降低50%,另一方面值得一提的是最终产品的色彩较为柔和。上海振旭化工 欢迎各界人士来电洽谈。
在人造大理石及玛瑙制品中的应用 中空玻璃微珠较大的用途是人造大理石。在美国,有许多制造商正在使用这种填料,它有以下优点:①改善冲击性能,正确配方制造的产品其性能高于人造大理石协会的要求。②改善纹理布局及颜色的连续性,使得产品更加美观、耀目。③降低固化时间,具有较快的模具周转速度。④改善冲击强度,提高抗龟裂能力,降低产品的破损率。⑤改善机械加工性,减少去飞边、切割、钻空和打磨的时间。⑥降低后处理工具的磨损。⑦改善浅颜色的着色性能,同时降低TiO2的用量(虽然有时需要混入一些较深的颜色)⑧重量轻,使其在搬运及安装过程中变得更容易,也降低了运输成本。以上所列的优点③~⑧能够明显降低成本。表1为人造大理石标准配方及含中空玻璃微珠配方所用树脂粘度为600~2000cP,采用中空玻璃微珠不会造成混合体系粘度的增加。在这个配方中重量占3.8%的中空玻璃微珠其体积可达26.8%,这样会使其最终重量降低30%。由于树脂的粘度、当时的环境温度及碳酸钙的粒度是影响混合物体系粘度的主要原因,因此应优化这些因素,使其纹理更流畅、气泡更易排除,特别是当树脂的温度小于21℃时。碳酸钙的粒度应小于30目,以减少对玻璃微珠的损伤.
表1 配方中是否含有中空玻璃微珠的人造大理石密度比较 配方 Wt% Vol% 密度 标准 树脂 23 41 碳酸钙 77 59 2.079 合计 100 100 含中空玻璃微珠 树脂 30.2 37.4 中空玻璃微珠 3.8 26.8 1.466 碳酸钙 66 35.8 合计 100 100
修补复合材料(树脂腻子) 修补用的复合材料,其典型的应用是在树脂中加入中空玻璃微珠以取代部分碳酸钙、滑石粉等填料制成各种腻子,具有质量轻、附着力强、容易涂沫、低收缩性等优点,尤其是砂磨和抛光等加工性能显著提高。对空心微珠来说,灰尘是一个问题,有趣的是,在后处理过程中,比如打磨,导致空心微珠的破坏形成的灰尘其密度同玻璃的一样,这样它便不会漂于空中而很容易地降落到地面上。这样会大大减少空气中粉尘含量过高的缺点。这种腻子广泛用于玻璃钢制品、汽车、船舶、机床等的修补作业中。应当注意的是中空玻璃微珠的直径不宜过大,防止打磨后留下太大的针孔,同时要选择更加理想的级配。表2是典型的腻子配方,当然要根据树脂的粘度等因素来做适当的优化。表2 含有中空玻璃微珠的腻子配方 组成 密度 Wt% Vol% 树脂 1.14 37 42 中空玻璃微珠 0.23 5 29 滑石粉 2.60 58 29 这个配方的密度为1.3g/cm3,而普通腻子为1.89kg/cm3左右。
合成泡沫塑料块及轻质芯材 早在1971年SPI年会上就有一篇研究论文中介绍道,在环氧树脂中加入中空玻璃微珠得到了较高质量的泡沫,并且密度降低了20%~30%。泡沫密度为0.66g/cm3时静压强度为1136kg/cm2。在制造轻质GRP芯材时,正是由于采用了中空玻璃微珠才使得技术问题得以解决。与通常玻璃钢相比,这种芯材的使用大大提高了制品的刚度并降低重量,根据刚度来选择芯材的厚度。芯材的密度为0.57g/cm3~0.67g/cm3,抗压强度为284kg/cm2~426kg/cm2。广泛应用于各种工业制品,如车辆、船舶、建筑用夹层复合板,运动器材、模型、深水浮体等。
聚酯家具 聚酯家具是中空玻璃微珠的另一应用领域,主要是降低其密度,例如,它能使混合物的密度达到0.9g/cm3,而用珍珠岩为1.09g/cm3,用碳酸钙为1.46g/cm3。同时也提高了砂磨和抛光等加工性能,节约工时为50%左右。随着中空玻璃微珠比例的增加其刚度也明显地提高。
玻璃钢喷涂工艺 含有中空玻璃微珠的树脂体系可以采用无气喷涂设备来喷涂,再加上玻璃纤维短切毡、布及其它织物能够制造船舶用层合板。随着体系内压力的不同来选择相应类型的中空玻璃微珠。较为典型的配方是中空玻璃微珠的体积含量为22%,相应的重量含量为5%左右。利用较低剪切力的搅拌设备便能很好地使之分散到树脂中去。
SMC和BMC制品 在SMC和BMC中加入中空玻璃微珠能够使其最终模塑制品的重量降低25%~35%。密度由1.7g/cm3~1.9g/cm3降到1.2g/cm3~1.4g/cm3,介电性能也得到大大地改善。选择合适的配方能够制造出符合特定要求的绝热板。较为典型的应用实例是能够制造出较为轻质的汽车和建筑零部件。
玻纤缠绕和拉挤工艺 在纤维缠绕和拉挤工艺中应用中空玻璃微珠能够降低成本,降低复合材料的密度,提高复合材料的抗冲击强度和机械加工性能。在拉挤工艺中采用中空玻璃微珠能够降低树脂和玻纤的用量。添加8%的中空玻璃微珠就能减少15%以上的玻纤用量。除了减少重量以外,还能够改善制品的物理、介电和绝缘性能。此外,另一个优点是它在树脂体系中能够起到润滑剂的作用,可以使拉挤速度提高25%~70%。
其它树脂体系 中空玻璃微珠除了添加到聚酯中以外还可添加到环氧树脂中,制成合成泡沫塑料块。在美国环氧/玻璃微珠合成泡沫已经成功地应用到船舵中。这种泡沫塑料块作为船舵的芯材而表层为玻璃钢。同聚酯相比环氧在减轻重量的前提下还能够使之强度得到显著地增加。实验室测得的数据表明,用这种材料制成的船舵,其抗弯曲载荷可达2500kg,是工程塑料ABS强度的3倍。在德国也有用聚酰亚胺树脂和中空玻璃微珠合成的泡沫塑料块来制造船舵的,这个船舵用在长12.5m,重55kg的帆船上。在结构材料中已经成功地采用了刚性的聚酰亚胺泡沫塑料块,这种结构能够使其压缩、弯曲强度及模量,高温条件下的尺寸稳定性得以提高。
空心玻璃微球应用非常广泛:
* 涂料、油漆领域: 油漆油墨,如粘合剂、绝缘漆、防腐漆、耐高温防火油漆、建筑涂料、.汽车腻子、地板漆、原子灰等。
* 塑料工业领域: 聚丙烯(PP)、尼龙、聚对苯二甲酸(PBT)、聚甲醛(POM)、PA等功能母粒制成品,如汽车饰件、仪表板、家电外壳、风扇、音箱、灯具总承、铸件、齿轮、结构件、管材等。
* 改性橡胶:各种工业和民用橡胶制品,如地板胶、电线电缆、各类电气开关等绝缘材料、军用民用鞋底、轮胎、传送带、垫圈、密封条等。
* 电气器材、运动器材、医疗器械、汽车部件、汽车壳体、保险杠、活塞环等许多领域。
* 建材工业领域:建筑装饰、高级路面铺料、屋顶防水保温涂层、道路工程、改性沥青等。 . 封装材料领域:变压器灌封料、电子封装材料等。
* 聚酯领域:各种玻璃钢家具、船舶、人造大理石 * 航天和空间开发、军事工业:宇宙飞行器、飞船表面复合材料,卫星防火层,.海洋、船舶、深海潜艇等;
* 石油工业:油田固井、管道、防腐保温、海底工程等。上海振旭化工 欢迎各界人士来电洽谈。
1.微囊的形态与粒径及分布
2.微囊的载药量与包封率
3.微囊药物的释放速率
4.有机溶剂残留量
微囊与微球的载体材料
常用的载体材料:
1.天然高分子材料
(1)明胶
明胶是由氨基酸与肽交联形成的直链聚合物。
明胶分酸法明胶(A型)和碱法明胶(B型)。A型明胶等电点为7~9,B型明胶稳定而不易长菌,等电点为4.7~5.0。两者的成囊性无明显差别,作囊材的用量为20~100g/L 。
可生物降解,几乎无抗原性。
(2) 阿拉伯胶
一般常与明胶等量配合使用,作囊材的用量为20~100g/L,亦可与白蛋白配合作复合材料。
(3) 海藻酸盐
系多糖类化合物,常用稀碱从褐藻中提取而得。海藻酸钠可溶于不同温度的水中,不溶于乙醇、乙醚及其它有机溶剂;不同Mav产品的粘度有差异。可与甲壳素或聚赖氨酸合用作复合材料。因海藻酸钙不溶于水,故海藻酸钠可用CaCl2固化成囊。
(4) 壳聚糖
壳聚糖是由甲壳素脱乙酰化后制得的一种天然聚阳离子型多糖,可溶于酸或酸性水溶液,无毒、无抗原性,在体内能被溶菌酶等酶解,具有优良的生物降解性和成膜性,在体内可溶胀成水凝胶。
2.半合成高分子材料
作囊材的半合成高分子材料多系纤维素衍生物,其特点是毒性小、粘度大、成盐后溶解度增大。
(1) 羧甲基纤维素盐(CMC-Na)
常与明胶配合作复合囊材,一般分别配1~5g/L CMC-Na及30g/L明胶,再按体积比2:1混合。CMC-Na遇水溶胀,体积可增大10倍,在酸性液中不溶。水溶液粘度大,有抗盐能力和一定的热稳定性,不会发酵,也可以制成铝盐CMC-A1单独作囊材。
(2)醋酸纤维素酞酸酯(CAP)
在强酸中不溶解,可溶于pH>6的水溶液,在二氧六环、丙酮中溶解,水、乙醇中不溶。用作囊材时可单独使用,用量一般在30g/L左右,也可与明胶配合使用。
(3)乙基纤维素(EC)
化学稳定性高,适用于多种药物的微囊化,不溶于水、甘油或丙二醇,可溶于乙醇,易溶于乙醚,遇强酸易水解,故对强酸性药物不适宜。用乙基纤维素为囊材时,可加入增塑剂改善其可塑性。
(4)甲基纤维素(MC)
在水中溶胀成澄清或微浑浊的胶体溶液,在无水乙醇、氯仿或乙醚中不溶。用作囊材的用量为10~30g/L,亦可与明胶、CMC-Na、聚维酮(PVP)等配合作复合囊材。
(5)羟丙甲纤维素(HPMC)
冷水中能溶胀成澄清或微浑浊的胶体溶液,pH值4.0~8.0(1%溶液,25℃) ,无水乙醇、乙醚 或丙酮中几乎不溶。
3.合成高分子材料
有生物不降解的和生物降解的两类。
生物不降解、且不受pH影响的囊材有聚酰胺、硅橡胶等。
生物不降解、但可在一定pH条件下溶解的囊材有聚丙烯酸树脂类、聚乙烯醇等。
生物降解的材料:聚碳酸酯、聚氨基酸、聚乳酸(PLA)、乙交酯丙交酯共聚物(PLGA)、聚乳酸-聚乙二醇嵌段共聚物(PLA-PEG)ε-己内酯与丙交酯共聚物等。特点:无毒、成膜性好、化学稳定性高,可用于注射。
聚酯类是迄今研究最多、应用最广的生物降解的合成高分子,它们基本上都是羟基酸或其内酯的聚合物。
常用的羟基酸是乳酸(1actic acid)和羟基乙酸(glycolic acid)。乳酸缩合得到的聚酯称聚乳酸,用PLA表示,由羟基乙酸缩合得的聚酯称聚羟基乙酸,用PGA表示;由乳酸与羟基乙酸缩合而成的,用PLGA表示,亦可用PLG表示。有的共聚物经美国FDA批准,也作注射用微球、微囊以及组织埋植剂的载体材料。
结合物垫在层析时荧光微球在T线前面凝集的现象怎么解决呢,结合物垫增加了吐温和糖的含量还是有这种现象的


暂无品牌问答