请使用支持JavaScript的浏览器! +,Protein A Magnetic Beads for High-Throughput Purification蚂蚁淘商城
商品信息
联系客服
Bioclone/BcMag™ Protein A Magnetic Beads/5 ml/MAA102
郑重提醒:
无质量问题不接受退换货,下单前请仔细核对信息。
下单后请及时联系客服核对商品价格,订单生效后再付款。
Bioclone/BcMag™ Protein A Magnetic Beads/5 ml/MAA102
品牌 / 
Bioclone Inc
货号 / 
MAA102
美元价:
(友情提示:该价格仅为参考,欢迎联系客服询价!)
数    量:
免费咨询热线
4000-520-616

BcMag™ Protein A Magnetic Beads are high-capacity, high-throughput affinity particles used in antibody purification and immunoprecipitation procedures with manual or robotic magnetic racks. The magnetic microspheres are covalently immobilized with a high density ultrapure (Purity>97%) recombinant protein A proteins. Protein A Magnetic Beads are utilized for antibody purification from serum, cell culture supernatant, or ascites, and antigen IP/Co-IP from cell or tissue extracts. The Protein A Magnetic Beads procedure has been improved to allow maximum recovery and purity of the recovered antibody or antigen. For antibody purification, the beads are incubated with the antibody solution, after which they magnetically separated from the supernatant. For immunoprecipitation, the beads are delivered to an antigen-containing sample to which an antibody has been introduced and allowed to incubate to form the antibody-antigen complex. The attached antibodies or antigens are dissociated from the beads using an elution buffer and recovered from the solution manually using a magnetic stand or by using automation instruments.

Protein A is an antibody-binding cell wall protein that originates from Staphylococcus aureus. It comprises a single polypeptide chain with little or no carbohydrate and has a molecular mass of 42kDa. It consists of a signal sequence, five immunoglobulin-binding domains E-D-A-B-C aligned in series, each of which binds strongly to the heavy chain constant region (Fc) of IgG H2-CH3 from various mammalian species and a cell-wall binding domain. The recombinant protein has a higher capacity and maximum specific IgG binding than native Protein A since it only keeps the IgG-binding domains. Protein A binds to antibodies from various animals, including mice, humans, rabbits, pigs, dogs, and cats. Table 1 lists the antibody binding properties.

Table 1. Protein A binding properties

Species

Antibody

Binding
(Protein A)

Mouse

IgG 1

IgG 3

IgG 2a

IgG 2b

IgM

Total IgG

++

++++

++++

++++

++++

Human

IgG1

IgG2

IgG3

IgG4

IgA

IgD

IgM

Fab

scFv

Total IgG

++++

++++

++

++++

++

++

++

++

++++

Rat

IgG 1

IgG 2a

IgG 2b

IgG 2c

Total IgG

++

++++

+++

Species

Antibody

Binding
(Protein A)

Sheep

IgG1

IgG2

Total IgG

++

++++

++

Horse

IgG(ab)

IgG(c)

IgG(T)

Total IgG

++

++

++

Goat

IgG1

IgG2

Total IgG

++

++++

++

Cow

IgG1

IgG2

Total IgG

++

++++

++

Rabbit

Total IgG

++++

Guinea Pig

Total IgG

++++

Pig

Total IgG

++++

Cat

Total IgG

++++

Dog

Total IgG

++++

++++ (Strong Binding)

+++ (Medium Binding)

++ (Weak Binding)

– (No Binding)

N/A (No Information)

 

Features and Advantages

Quick, Easy, and one-step high-throughput procedure; eliminates columns or filters or a laborious repeat of pipetting or centrifugation.

High efficiency – produces the same or more IP target antigens as magnetic beads from other providers.

Low nonspecific binding – highly pure product is provided by stable, pre-blocked beads

Consistent – magnetic beads reduce resin loss and allow more efficient separation than classic IP methods that rely solely on centrifugation.

Beads are versatile since they can be used in both human and automated procedures.

Applications

Immunoprecipitation including IP, Co-IP, ChiP, RIP

Cell sorting

High-throughput screening and purification of antibodies

Antibody purification

Using Protein A Magnetic beads to purify the antibody from the serum as an example, the general purification protocol is as follows:

Antibody purification protocol using Protein A

1.

Materials Required

a.

Buffer Composition

BcMag™ Protein A Beads (10 mM Tris, 0.15 M NaCl, 0.1% BSA,1 mM EDTA, pH 7.4, 0.1% NaN3)

1x Protein A Binding/Washing Buffer (57.7 mM Na2HPO4, 42.3 mM NaH2PO4, pH 7.0)

1x Protein A Elution Buffer (0.2 M Glycine/HCl, pH 2.5)

1x Protein A Neutralization Buffer (1.0 M Tris-HCl, pH 9.0)

b.

Equipment

Magnetic Rack (for manual operation)

Based on sample volume, the user can choose one of the following Magnetic Racks:

– BcMag™ Magnetic Rack-2 for holding two individual 1.5 ml centrifuge tubes (Cat. No. MS-01);

– BcMag™ Magnetic Rack-6 for holding six individual 1.5 ml centrifuge tubes (Cat. No. MS-02);

– BcMag™ Magnetic Rack-24 for holding twenty-four individual 1.5-2.0 ml centrifuge tubes (Cat. No. MS-03);

– BcMag™ Magnetic Rack-50 for holding one 50 ml centrifuge tube, one 15 ml centrifuge tube, and four individual 1.5 ml centrifuge tubes (Cat. No. MS-04);

– BcMag™ Magnetic Rack-96 for holding a 96 ELISA plate or PCR plate (Cat. No. MS-05).

For larger scale purification, Ceramic magnets Block for large scale purification ( 6 in x 4 in x 1 in block ferrite magnet, Applied Magnets, Cat. No. CERAMIC-B8)

Corning 430825 cell culture flask for large-scale purification (Cole-Parmer, Cat. No. EW-01936-22)

Mini BlotBoy 3D Rocker, fixed speed, small 10″ x 7.5″ platform w/ flat mat (Benchmark Scientific, Inc. Cat. No. B3D1008) or compatible

2.

Procedure

Note:

This protocol is optimized for purifying most IgG antibodies from different sources. However, designing a universal kit for all IgG purification is impossible because no two antibodies are precisely alike. To obtain the best results, each user must determine the optimal working conditions for the purification of individual antibodies, especially for those weakly-binding antibodies (see Table 1), based on suggestions in the Troubleshooting section.

It is necessary to dilute serum samples, ascites fluid, or tissue culture at least 1:1 with Binding/Washing buffer before the purification.

Before purifying IgG, the user should equilibrate all the reagents in the kit to room temperature and make 1x working solutions by diluting stock solutions with dH2O.

A.

Magnetic Beads Preparation

1.

Vigorously shake the bottle until the magnetic beads become homogeneous and transfer an appropriate volume of the magnetic beads to a new tube or flask.

Note:

Optimize the number of beads used for each application. Too many beads will cause higher background. Insufficient beads will lead to lower yields. We recommend 100 μl of the wholly suspended beads per 200 μg of IgG antibodies. Typically, a high-titer antiserum has roughly 5 mg/ml of IgG for rabbits, 10 mg/ml of IgG for Mouse ascites, and 20 mg/ml of IgG for goat or sheep antiserum.

Do not allow the beads to sit for more than 5 minutes before dispensing. Resuspend the magnetic beads every 3 minutes.

2.

Place the tube on the magnetic rack for 1-3 minutes. Remove the supernatant while the tube remains on the rack. Add ten bead-bed volumes of 1x Binding/Washing Buffer and mix the beads by pipetting or vortex. Place the tube on the magnetic rack for 1-3 minutes and remove the supernatant while the tube remains on the rack.

3.

Repeat step (2) one more time. The beads are ready for purification.

B.

Purification

1.

Add an equal volume of 1x Binding/Washing Buffer to the sample and mix well.

2.

Mix the equilibrated beads [Step A (3)] to the sample and incubate on Mini BlotBoy 3D Rocker with continuous rotation for 5-10 minutes at room temperature or 30-45 minutes at 4ºC.

3.

Place the tube on the magnetic rack for 1-3 minutes. Remove the supernatant while the tube remains on the rack. Add 10 bead-bed volumes of 1x Binding/Washing Buffer and shake it 10 times to wash the beads. Place the tube on the magnetic rack for 1-3 minutes and remove the supernatant while the tube remains on the rack.

4.

Repeat step (3) six times.

Note:

This step is critical to get high pure protein. It may be necessary to wash the beads more than six times for some proteins to reduce the nonspecific binding.

Add a nonionic detergent (0.5% Triton X 100, 0.5% Tween 20) to the binding/washing buffer, which may reduce the nonspecific binding.

5.

Add an appropriate amount of Elution Buffer and mix well by pipetting up and down 10-12 times or vortex mixer for 5 minutes.

6.

Collect and transfer the antibody-containing supernatant to a new tube. Immediately neutralize the eluted antibody solution by adding 1/10th volume of neutralization buffer and mix well.

Questions and Answers

1.

Sometimes, why could IgG not be eluted from the magnetic beads?

The pH of the Elution Buffer may be incorrect. The correct pH should be 2.5.

The elution conditions are too mild to elute the antibody.

Because a few antibodies can only be eluted at pH 2.0.

2.

What accounts for lost or decreased immuno-reactivity of the eluted antibody?

It will not influence the immuno-reactivity of most antibodies once a Neutralization Buffer is added, immediately neutralizing the eluted fraction. However, a few antibodies (e.g., some monoclonal antibodies) are acid-labile and can irreversibly lose their activity at very low pH values. For those low pH sensitive antibodies, One-Step Antibody Purification Kit is an alternative method for antibody purification. The kit is a rapid, one-step, and effective method of isolating the antibodies from serum and other sample types. The magnetic beads bind and remove serum proteins, allowing pure IgG to be collected in the supernatants. The antibody keeps 100% activity since no harsh elution conditions are involved.Antibody purification by BcMag™ One-minute antibody purification Kit

3.

Why are multiple bands observed in the eluted antibody solution?

Some host proteins may nonspecifically interact with your target antibody. Users can add NaCl (50-200mM, final concentration) to the binding and elution buffers.

Protocol for Immunoprecipitation

A.

Additional Materials Required

1.5mL microcentrifuge tubes

Antibody for immunoprecipitation

Antigen sample

Lysis Buffer: 20 mM Tris HCl pH 8,137 mM NaCl,1% Nonidet P-40 (NP-40),2 mM EDTA. Store up to 6 months at 4°C. Immediately before use add protease inhibitor.

Wash buffers: 10mM Tris, pH 7.4, 1mM EDTA,1mM EGTA; pH 8.0, 0.5 M NaCl,1% Triton X-100, 0.05% Tween-20 0.2mM sodium orthovanadate, Protease inhibitor cocktail. Store up to 6 months at 4°C. Immediately before use add protease inhibitor. 0.05% Tween-20 Detergent and 0.5M NaCl.

Elution Buffer (0.2 M Glycine/HCl, pH 2.5)

Neutralization Buffer (1.0 M Tris-HCl, pH 9.0)

B.

Magnetic rack

Based on sample volume, the user can choose one of the following Magnetic Racks:

– BcMag™ Magnetic Rack-2 for holding two individual 1.5 ml centrifuge tubes (Cat. No. MS-01);

– BcMag™ Magnetic Rack-6 for holding six individual 1.5 ml centrifuge tubes (Cat. No. MS-02);

– BcMag™ Magnetic Rack-24 for holding twenty-four individual 1.5-2.0 ml centrifuge tubes (Cat. No. MS-03);

– BcMag™ Magnetic Rack-50 for holding one 50 ml centrifuge tube, one 15 ml centrifuge tube, and four individual 1.5 ml centrifuge tubes (Cat. No. MS-04);

– BcMag™ Magnetic Rack-96 for holding a 96 ELISA plate or PCR plate (Cat. No. MS-05).

C.

Immunoprecipitation procedure

Note: This protocol is an example of immunoprecipitation and will require optimization for each application.

1.

Sample preparation

a.

Adherent cells

a)

Place the cell culture dish or flask on ice, aspirate media, and wash the cells with cold PBS.

b)

Aspirate PBS, then add appropriate volume ice cold lysis buffer (1 mL per 107 cells/100 mm2 dish/150 cm2 flask; 0.5 ml per 5×106cells/60 mm2 dish or 75 cm2 flask)

Note: Optimizing the volume of lysis buffer is necessary to ensure complete lysis and an optimal final protein concentration in the lysate.

c)

Incubate for 20 minutes on ice and then Scrape adherent cells off the dish or flask using a cell scraper and transfer the cell suspension into a microfuge tube and clarify the lysate by spinning for 10 minutes at 13,000 rpm, at 4°C.

d)

Collect the supernatant (avoiding the pellet) into a new microfuge tube. Determine protein concentration by appropriate methods.

e)

Proceed with the immunoprecipitation or Store at -20°C or -80°C until needed.

b.

Suspension Cells

a)

Transfer cells into a conical tube.

b)

Spin to pellet cells at low speed at 1400 rpm for 5 minutes at room temperature and aspirate off media.

c)

Wash pellet with 10 ml ice-cold PBS.

d)

Spin cells on low speed (at 1400 rpm), and Decant the PBS wash.

e)

Repeat wash and aspiration.

f)

Add an appropriate volume of ice-cold lysis buffer (10 to 100 μl per 2 x 106 cells) and Incubate cells for 30 minutes on ice.

Note: If necessary, sonicate the lysates on ice for 20-30 seconds to shear genomic DNA and cellular components.

g)

Centrifuge at 13,000 rpm for 10 minutes at 4ºC.

h)

Collect the supernatant into a fresh tube and determine protein concentration by appropriate methods. Adjust concentration to 2.5 mg/ml with lysis buffer.

i)

Proceed with the immunoprecipitation or Store at -20°C or -80°C until needed.

c.

Lysates from tissue

a)

Chop the tissue into small pieces, and wash twice with ice-cold PBS.

b)

Transfer ~5 mg chopped tissue into a tube, and add 300μl cold lysis buffer. Homogenize with an electric homogenizer or sonicate on ice.

c)

Spin at 14000 rpm for 10 min at 4°C.

d)

Collect the supernatant into a fresh tube. Determine protein concentration by appropriate methods.

e)

Proceed with the immunoprecipitation or Store at -20°C or -80°C until needed.

2.

Combine the 100–150 μg cell lysate with an appropriate amount of antibody in a 1.5mL centrifuge tube and Bring the reaction volume to 400-500 μL with the Cell Lysis Buffer. Incubate the reaction for 1-2 hours at room temperature or overnight at 4ºC with continuous rotation.

Note: Optimizing the amount of antibodies used for each application is necessary. Excess antibodies will cause higher background. Insufficient antibodies will lead to lower yields. Performing a pilot experiment is required to determine the optimum amount of antibody titer for maximum binding to the protein of interest. Typically in such an experiment, increasing amounts of antibodies for a fixed amount of protein is performed to establish the optimum titer. The following is a general guideline for antibody use. For individual antibodies, check the antibody instruction sheet for recommended antibody concentration.

For 100–150 μg cell lysate, use:

1–5 μL polyclonal antiserum

1 μg affinity-purified polyclonal antibody

0.2–1 μL ascites fluid (monoclonal antibody)

20–100 μL culture supernatant (monoclonal antibody)

3.

Transfer the appropriate amount of BcMag™ Protein A Magnetic Beads into a 1.5mL microfuge.

Note:

Vigorously shake the bottle until the magnetic beads become homogeneous before use.

The amount of the beads for use can be determined by the beads’ antibody binding capacity (~ 60μg IgG/mg ) and the antibody used.

Do not allow the beads to sit for more than 5 minutes before dispensing. Resuspend the magnetic beads every 3 minutes.

4.

Wash the beads with 1ml of Wash Buffer and gently vortex to mix. Collect the beads by a magnet and remove and discard the supernatant.

5.

Add the antigen sample/antibody mixture to the pre-washed magnetic beads and incubate at room temperature for 1 hour with continuous rotation.

6.

Collect the beads by a magnet, remove the supernatant, and save them for analysis.

7.

Wash the beads with 500μL of Wash Buffer by pipetting up and down 10 times. Collect the beads and discard the supernatant.

8.

Repeat wash twice until the absorbance of the supernatants at 280 nm approaches the background level (OD 280 < 0.05).

Note:

Adding a higher concentration of salts, nonionic detergent, and reducing agents may reduce the nonspecific background. For example, we are adding NaCl (up to 1-1.5 M), 0.1-0.5% nonionic detergents such as Triton X 100 or Tween 20, and a reducing reagent such as DTT or TCEP (usually 3mM) to the washing buffer.

9.

Add 500μL of ultrapure water to the tube and gently mix. Collect the beads on a magnetic stand and discard the supernatant.

10.

Add 10-100μL of Elution Buffer and pipette up and down 10-20 times. Collect the supernatant into a fresh tube. Add 1/10th of Neutralization Buffer.

Troubleshooting

Problem

The yield of the purified protein is too low or undetectable in eluted protein solution by SDS-PAGE.

Probable Cause

The protein degraded or unstable

Suggestion

Add protease inhibitors.

Problem

The yield of the purified protein is too low or undetectable in eluted protein solution by SDS-PAGE.

Probable Cause

Not enough magnetic beads were used.

Suggestion

Increase the amount of magnetic bead used for capture.

Problem

The yield of the purified protein is too low or undetectable in eluted protein solution by SDS-PAGE.

Probable Cause

The protein does not bind to the Magnetic Beads.

Suggestion

Check the pH of all the buffers and solutions.

Problem

The yield of the purified protein is too low or undetectable in eluted protein solution by SDS-PAGE.

Probable Cause

The sample had an insufficient amount of target protein

Suggestion

Increase the amount of antigen sample.

Problem

The yield of the purified protein is too low or undetectable in eluted protein solution by SDS-PAGE.

Probable Cause

The protein is not efficiently eluted from beads.

Suggestion

Increase incubation time with elution buffer.

Problem

Observe multiple bands in the eluted protein

Probable Cause

Nonspecific protein bound to the magnetic beads

Suggestion

Increase NaCl to the Binding/Wash Buffers.

Problem

Observe multiple bands in the eluted protein

Probable Cause

Degradation of the antigen

Suggestion

Add appropriate protease inhibitor.

Problem

Observe multiple bands in the eluted protein

Probable Cause

The washing condition is not optimized.

Suggestion

  • Increase the concentration of detergent, reducing agent, or salt.
  • Increase washing time and washing volume.

Problem

Probable Causes

Suggestions

The yield of the purified protein is too low or undetectable in eluted protein solution by SDS-PAGE.

The protein degraded or unstable

Add protease inhibitors.

Not enough magnetic beads were used.

Increase the amount of magnetic bead used for capture.

The protein does not bind to the Magnetic Beads.

Check the pH of all the buffers and solutions.

The sample had an insufficient amount of target protein

Increase the amount of antigen sample.

The protein is not efficiently eluted from beads.

Increase incubation time with elution buffer.

Observe multiple bands in the eluted protein

Nonspecific protein bound to the magnetic beads

Increase NaCl to the Binding/Wash Buffers.

Degradation of the antigen

Add appropriate protease inhibitor.

The washing condition is not optimized.

  • Increase the concentration of detergent, reducing agent, or salt
  • Increase washing time and washing volume

Learn More

Instruction Manual

MSDS

Related Antibody Magnetic Beads →

蚂蚁淘电商平台
ebiomall.com
公司介绍
公司简介
蚂蚁淘(www.ebiomall.cn)是中国大陆目前唯一的生物医疗科研用品B2B跨境交易平台, 该平台由多位经验丰富的生物人和IT人负责运营。蚂蚁淘B2B模式是指客户有采购意向后在蚂蚁 淘搜索全球供应信息,找到合适的产品后在蚂蚁淘下单,然后蚂蚁淘的海外买手进行跨境采购、 运输到中国口岸,最后由蚂蚁淘国内团队报关运输给客户...
蚂蚁淘承诺
正品保证: 全球直采 在线追溯 蚂蚁淘所有产品都是自运营的,我们已经跟国外多家厂方建立品牌推广合作关系, 获得对方的支持和授权; 同时客户可以通过订单详情查看到货物从厂方至客户的所有流程, 确保货物的来源; 正规报关,提供13%增值税发票。
及时交付: 限时必达 畅选无忧 蚂蚁淘的运营团队都是有着多年经验的成员,他们熟悉海外采购、仓储物流、报关等环节; 同时通过在线的流程监控,蚂蚁淘的进口速度比传统企业提高了50%以上, 部分产品甚至能做到7-10天到货,即蚂蚁淘的“时必达”服务。
轻松采购: 在线下单 简单省事 蚂蚁淘的价格是真实透明的,并且具有很大的价格优势,不需要繁杂的询价比价; 报价单与合同可以直接在线生成或打印;就像在京东购物一样, 您的鼠标点击几 次即完成在蚂蚁淘的采购,订单详情会告诉您所有进程。
售后申请: 耐心讲解 优质服务 蚂蚁淘提供的产品在使用过程中如因产品质量问题有售后需求时, 您可通过我的订单提交您的“申请售后”, 蚂蚁淘产品顾问会第一时间为您处理, 在售后服务过程中如遇到问题也可致电蚂蚁淘客服热线:4000-520-616。
核糖核酸酶A溶液产品名称:核糖核酸酶A溶液产品简介:上海通善生物是核糖核酸酶A溶液最权威的供应商,提供报价,咨询,技术服务,欢迎来电021-61806666咨询选购。产品库存:现货。产品价格:询价。供 应 商:通善生物。供应商地址:上海市闵行区金平路788弄166号。核糖核酸酶A溶液说明书:核糖核酸酶A溶液其它信息:货号产品名称级别K610-1L0.1X SSC BUFFER WITH 0.2% SDS超纯级K611-1L0.1X SS 查看更多>
齐一生物科技(上海)有限公司在发布的DNA &amp;amp; RNase AwayTM 去核酸酶试剂供应信息,浏览与DNA &amp;amp; RNase AwayTM 去核酸酶试剂相关的产品或在搜索更多与DNA &amp;amp; RNase AwayTM 去核酸酶试剂相关的内容。 查看更多>
上海研生实业有限公司所提供的Caspase 激活的脱氧核糖核酸酶抑制剂质量可靠、规格齐全,上海研生实业有限公司不仅具有精湛的技术水平,更有良好的售后服务和优质的解决方案,欢迎您来电咨询此产品具体参数及价格等详细信息! 查看更多>
Bal 31 核酸酶对双链DNA或RNA的两端具有外切酶活性,可以开成长度连续的短链。该酶消化后产生的片段绝大部分为钝末端,可以被T4 DNA连接酶连接。若要取得更多的钝末端片段,可以用DNA聚合酶I大片段将暴露的黏性末端通过聚合作用不平,也可以用绿豆芽核酸酶将黏性末端切去。 来源:Alteromonas espejiani。应用:产生具有精确末端的DNA片段。单位定义:在20mM Tris-HCl, pH8.0,600mM NaCl,... 查看更多>
小鼠抗磷脂抗体(apa)elisa试剂盒使用注意事项:1.[jl40314] 小鼠抗磷脂抗体(apa)elisa试剂盒检测前,检查各种仪器, 查看更多>
2018-11-12
作为一种通用酶,核糖核酸酶P(RNase P)是一种通用核酶,已在生命的三个王国中发现。它加工tRNA前体(pre-tRNA)的5端。RNase P是一种核糖核蛋白复合物,由单个具有催化能力的RNA组分和可变数量的蛋白组成。与仅含有一种小蛋白辅因子的细菌RNase P不同的是,古细菌RNase P和真核生物细胞核中的RNase P已进化出相当复杂的蛋白亚基:古细菌中有5种蛋白亚基,真核生物中有9~10种。这种tRNA前体加工反应可通过包括四个不同事件的动力学反应机制来加以描述:(1)R 查看更多>
人核糖核酸酶 ELISA人核糖核酸酶 ELISA属人ELISA试剂盒,是ELISA试剂盒中常用检测产品,的检测原理、产品报价及操作事项请咨询上海通善生物工程师,企业QQ 1465907913。属 人ELISA试剂盒规格 96T/48T包装 进口分装储存 2~8℃产品 美国供应商 上海通善生物特别说明 利用ELISA进行临床检验常见的样本一般包括血液(指血,静脉血),尿,粪便,脑脊液,胸腹水,前列腺液,精液,**分泌物等,这些样本收集的时 查看更多>
DNase I 是一种核酸内切酶,降解双链或单链DNA,产生5-磷酸末端的单核苷酸及寡核苷酸,在Mg2+存在时,DNase I独立地作用每条DNA链,切割位点是随机分布,在Mn2+存在下,DNase I 作用于DNA双链的大致同一位置,产生钝末端或具1-2个核苷酸突起的DNA片段。来源:牛胰贮存条件:4℃应用:1、用切口平移法进行放射性标记时,可用DNase I在双链DNA上产生随机切口;2、在进行亚硫酸氢盐介导的诱变前,可用DNase... 查看更多>
2021-09-20
人脱氧核糖核酸酶Ⅰ试剂盒,进口试剂盒http://www.aatbio.com.cn/人脱氧核糖核酸酶Ⅰ试剂盒用于盛放检测化学成分、药物残留、病毒种类等化学试剂的盒子。一般医院、制药企业使用。核酸提取纯化类、蛋白检测类、RNA。abcamhttp://www.aatbio.com.cn/goodsid/fenleiyi/3200090_abcam/1.htmlabihttp://www.aatbio.com.cn/goodsid/fen 查看更多>
Wako(和光纯药工业株式会社)在发布的核酸酶P1 Nuclease P1 供应信息,浏览与核酸酶P1 Nuclease P1 相关的产品或在搜索更多与核酸酶P1 Nuclease P1 相关的内容。 查看更多>
脱氧核糖核酸酶是由北京索莱宝科技有限公司代理或销售的Solarbio品牌的试剂,产品来源于北京市通州区马驹桥联东U谷86A。北京索莱宝科技有限公司是中国最权威的脱氧核糖核酸酶试剂销售服务商之一,在北京等地方销售脱氧核糖核酸酶试剂已经多年。生物在线为您提供众多企业脱氧核糖核酸酶仪器产品及图片,以便挑选到性价比高,合适的脱氧核糖核酸酶产品 查看更多>
本站已经有关于不属于细菌侵袭性酶的是A、血浆凝固酶B、脱氧核糖核酸酶C、卵磷脂酶D、神经氨酸酶E、氧化还原酶的答案,欢迎查看。 查看更多>
常见问题
蚂蚁淘所售产品均为正品吗?
蚂蚁淘的创始人兼CEO是钟定松先生,具有十年的从业经验,在业界享有良好的口碑; Ebiomall是跨境直采平台,我们直接从厂家采购,自己的团队负责国际物流和清关,中间没有第三方,蚂蚁淘承诺所售产品仅为正品,假一罚十。
下单后可以修改订单吗?
未确认状态的订单可以修改,打开“订单详情”页面,点击右上角的“修改订单”即可,若已审核确定,则订单无法修改。
商品几天可以发货?
现货产品付款审核后即可发货,大部分期货产品在3周左右即可到货,提供时必达服务的产品订单审核十天内即可发货。
订单如何取消?
如订单处于未确定状态,进入“我的订单"页面,找到要取消的订单,点击“取消订单”按钮。
可以开发票吗?
本网站所售商品都是正规清关,均开具13%正规发票,发票金额含配送费金额,另有说明的除外。
如何联系商家?
蚂蚁淘任何页面都有在线咨询功能,点击“联系客服”、“咨询”或“在线咨询”按钮,均可咨询蚂蚁淘在线客服人员, 或拨打4000-520-616,除此之外客户可在 联系我们页面找到更多的联系方式。
收到的商品少了/发错了怎么办?
同个订单购买多个商品可能会分为一个以上包裹发出,可能不会同时送达,建议查看订单详情是否是部分发货状态;如未收到,可联系在线客服或者致电4000-520-616。
退换货/维修需要多长时间?
一般情况下,退货处理周期为客户收到产品一个月内(以快递公司显示签收时间为准),包装规格、数量、品种不符,外观毁损、短缺或缺陷,请在收到货24小时内申请退换货;特殊商品以合同条款为准。
商品咨询