tech_banner
The dopamine d1-d2 receptor heteromer in striatal medium...
主页 >分析物 >GMO 和其他 \"PrintGMO 和 MBM

接近 80%世界大豆产量是通过转基因大豆实现的,超过 30% 的玉米是转基因大豆。全球转基因植物的种植面积每年增加数百万公顷,导致越来越需要通过测试来检测这些特性。残留物、三聚氰胺和肉骨粉等其他分析物时常成为头条新闻,也需要进行检测。

为了解决这些问题,Romer Labs 提供了广泛的检测试剂盒和分析服务。完整的概述可以在下面找到。

\"超市里的女人正在检查潜在客户allergens\"GMO

Romer Labs 提供广泛的分析服务和测试套件组合,用于快速、简单和灵敏的检测玉米、大豆、油菜籽、棉花、甜菜、紫花苜蓿和大米中的转基因检测。

了解更多

肉骨粉

Romer Labs 提供了一种简单、高度灵敏的横向流动测试,用于检测动物饲料中的肉骨粉 (MBM)。该检测试剂盒可检测牛饲料中禁止或受管制的哺乳动物衍生肉骨粉。

了解更多

Home >关于 >关于 Romer Labs \"Print关于 Romer Labs

在 Romer Labs,我们知道食品和饲料安全从\"不”开始。

1982 年成立于密苏里州华盛顿,多年来,我们已成为农业、食品和饲料行业诊断解决方案的领先供应商。

如今,Romer Labs 提供范围广泛的创新诊断解决方案,涵盖霉菌毒素、微生物、食品过敏原、麸质、转基因生物和其他食品污染物。

我们的产品组合包括:

移动式流式细胞仪 - CytoQuant® ELISA 检测试剂盒 - AgraQuant® 横向流动装置 - AgraStrip® 和 RapidChek® Reference材料 - Biopure™ 净化柱 - MycoSep®、MultiSep®、MycoSpin®、StarLine™ 取样研磨机

Romer Labs 目前在英国的奥地利运营着 5 个完全认可的服务实验室dom、新加坡和美国以及中国的 CMA 认证服务实验室。我们的实验室使用色谱和免疫学分析领域的尖端技术,提供霉菌毒素、食品过敏原、肉类形态分析和转基因生物的分析服务。

Romer Labs 处于最前沿诊断技术,我们不断扩展我们的产品和服务组合,以满足您不断变化的需求。

Romer Labs 的主要目标是提供科学可靠的高质量产品和卓越的服务,符合我们的使命——让世界的食品更安全®。

你想和我们一起为更美好的世界留下印记吗?

寻找更多信息?

立即联系我们!知识中心在线商店

主页 >分析 >微生物 \"Print微生物

食品安全在很大程度上取决于卫生食品生产设施的条件。高水平非致病性细菌的存在会影响消费者食品的保质期和质量。同样重要的是食物中不存在可能导致疾病的病原体。食品制造商必须努力保持加工环境清洁和无碎屑,以防止最终产品的交叉污染。

\"petri移动流式细胞术

CytoQuant® 移动式流式细胞仪可实现即时、现场通过直接量化海浪上的细菌和残留物来验证清洁和消毒程序aces。

了解更多

食品病原体检测

Romer Labs 为大肠杆菌、沙门氏菌、李斯特菌和弯曲杆菌提供经过验证的食品病原体检测解决方案以用户友好、快速、准确和具有成本效益的格式。

了解更多

微生物采样

Romer Labs 提供范围广泛的易于使用的无菌样本采集和表面采样套件,用于关键控制点的质量控制和危害识别。

了解更多

Dip-Slides

HygieneChek™ Plus 浸渍载玻片是一种易于使用、可靠且经济的微生物检测和运输系统,基于双面琼脂桨,用于检测和鉴定食品、化妆品中常见的各种微生物和药物。

了解更多

ActionsCite Favorites Display options Display options Format The dopamine d1-d2 receptor heteromer in striatal medium spiny neurons: evidence for a third distinct neuronal pathway in Basal Ganglia The dopamine d1-d2 receptor heteromer in striatal medium spiny neurons: evidence for a third distinct neuronal pathway in Basal Ganglia Dopaminergic signaling within the basal ganglia has classically been thought to occur within two distinct neuronal pathways; the direct striatonigral pathway which contains the dopamine D1 receptor and the neuropeptides dynorphin (DYN) and substance P, and the indirect striatopallidal pathway which expresses the dopamine D2 receptor and enkephalin (ENK). A number of studies have also shown, however, that D1 and D2 receptors can co-exist within the same medium spiny neuron and emerging evidence indicates that these D1/D2-coexpressing neurons, which also express DYN and ENK, may comprise a third neuronal pathway, with representation in both the striatonigral and striatopallidal projections of the basal ganglia. Furthermore, within these coexpressing neurons it has been shown that the dopamine D1 and D2 receptor can form a novel and pharmacologically distinct receptor complex, the dopamine D1-D2 receptor heteromer, with unique signaling properties. This is indicative of a functionally unique role for these neurons in brain. The aim of this review is to discuss the evidence in support of a novel third pathway coexpressing the D1 and D2 receptor, to discuss the potential relevance of this pathway to basal ganglia signaling, and to address its potential value, and that of the dopamine D1-D2 receptor heteromer, in the search for new therapeutic strategies for disorders involving dopamine neurotransmission. basal ganglia; dopamine D1–D2 receptor heteromer; dynorphin; enkephalin; striatonigral; striatopallidal; substance P. Classical model of the basal ganglia circuitry and associated mesolimbic structures . The… Classical model of the basal ganglia circuitry and associated mesolimbic structures. The major projections of D1R-only striatonigral and D2R-only striatopallidal neurons are depicted. In this model, the D1R and D2R exhibit complete segregation. Inhibitory (dotted lines) and excitatory (solid lines) pathways are shown. NAc, nucleus accumbens; CP, caudate putamen; VP, ventral pallidum; GP, globus pallidus; EPN, entopeduncular nucleus; STN, subthalamic nucleus; SNr, substantia nigra reticulata; SNc, substantia nigra compacta; VTA, ventral tegmental area. The dopamine D1 and D2 receptor are colocalized with dynorphin and enkephalin in rat nucleus accumbens shell. (A,B) Confocal images showing D1R and D2R colocalization with dynorphin (DYN) or enkephalin (ENK; white arrows). The D1R was also expressed individually with DYN (yellow arrows). (C,D) Neurons coexpressing DYN and ENK also expressed the D1R or the D2R (white arrows). Dopamine D1 and D2 receptors form D1–D2 receptor heteromers in rat globus pallidus… Dopamine D1 and D2 receptors form D1–D2 receptor heteromers in rat globus pallidus. Fluorescence resonance energy transfer (FRET), using Alexa 488 and Alexa 350 was used to identify interactions between endogenous D1R and D2R in neurons of rat globus pallidus. An interaction between the D1R and D2R was evident, with a relatively high mean FRET Efficiency (efficiency of energy transfer between the donor and acceptor fluorophores) of ~22%. The receptor antibody-linked fluorophores were calculated to be in close proximity with a relative distance of 5–7 nm (50–70 Å) indicative of D1–D2 receptor heteromer formation. Model of D1 and D2 receptor-coexpressing projections in the basal ganglia circuitry .… Model of D1 and D2 receptor-coexpressing projections in the basal ganglia circuitry. Previously reported (solid lines; Deng et al., ; Wang et al., 2006, 2007) projection sites of D1R/D2R or SP/ENK-coexpressing neurons and putative projections of D1R/D2R-DYN/ENK neurons (dashed lines), based on the reported regional distribution of neuronal cell bodies and presynaptic D1R and D2R colocalization (Perreault et al., 2010). Perreault ML, et al. PLoS One. 2012;7(3):e33348. doi: 10.1371/journal.pone.0033348. Epub 2012 Mar 12. PLoS One. 2012. PMID: 22428025 Free PMC article. Perreault ML, et al. Neuroscience. 2012 Dec 6;225:130-9. doi: 10.1016/j.neuroscience.2012.08.042. Epub 2012 Sep 15. Neuroscience. 2012. PMID: 22986162 Free PMC article. Perreault ML, Hasbi A, Alijaniaram M, Fan T, Varghese G, Fletcher PJ, Seeman P, O\'Dowd BF, George SR. Perreault ML, et al. J Biol Chem. 2010 Nov 19;285(47):36625-34. doi: 10.1074/jbc.M110.159954. Epub 2010 Sep 23. J Biol Chem. 2010. PMID: 20864528 Free PMC article. Surmeier DJ, et al. Trends Neurosci. 2007 May;30(5):228-35. doi: 10.1016/j.tins.2007.03.008. Epub 2007 Apr 3. Trends Neurosci. 2007. PMID: 17408758 Lindroos R, Dorst MC, Du K, Filipović M, Keller D, Ketzef M, Kozlov AK, Kumar A, Lindahl M, Nair AG, Pérez-Fernández J, Grillner S, Silberberg G, Hellgren Kotaleski J. Lindroos R, et al. Front Neural Circuits. 2018 Feb 6;12:3. doi: 10.3389/fncir.2018.00003. eCollection 2018. Front Neural Circuits. 2018. PMID: 29467627 Free PMC article. Review. Loth MK, et al. Endocrinology. 2021 Feb 1;162(2):bqaa223. doi: 10.1210/endocr/bqaa223. Endocrinology. 2021. PMID: 33367612 Free PMC article. Review. Martel JC, et al. Front Pharmacol. 2020 Jul 14;11:1003. doi: 10.3389/fphar.2020.01003. eCollection 2020. Front Pharmacol. 2020. PMID: 32765257 Free PMC article. Review. Kokane SS, et al. Front Behav Neurosci. 2020 May 20;14:74. doi: 10.3389/fnbeh.2020.00074. eCollection 2020. Front Behav Neurosci. 2020. PMID: 32508605 Free PMC article. Review. Balasubramani PP, et al. Cogn Neurodyn. 2020 Apr;14(2):181-202. doi: 10.1007/s11571-019-09564-7. Epub 2019 Nov 20. Cogn Neurodyn. 2020. PMID: 32226561 Free PMC article. Aizman O., Brismar H., Uhlen P., Zettergren E., Levey A. I., Forssberg H., Greengard P., Aperia A. (2000). Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons. Nat. Neurosci. 3, 226–230 Anderson K. D., Reiner A. (1990). Extensive co-occurrence of substance P and dynorphin in striatal projection neurons: an evolutionarily conserved feature of basal ganglia organization. J. Comp. Neurol. 295, 339–369 Anderson S. M., Famous K. R., Sadri-Vakili G., Kumaresan V., Schmidt H. D., Bass C. E., Terwilliger E. F., Cha J. H., Pierce R. C. (2008). CaMKII: a biochemical bridge linking accumbens dopamine and glutamate systems in cocaine seeking. Nat. Neurosci. 11, 344–353 Andringa G., Drukarch B., Leysen J. E., Cools A. R., Stoof J. C. (1999). The alleged dopamine D1 receptor agonist SKF 83959 is a dopamine D1 receptor antagonist in primate cells and interacts with other receptors. Eur. J. Pharmacol. 364, 33–41 Arnt J., Hyttel J., Sanchez C. (1992). Partial and full dopamine D1 receptor agonists in mice and rats: relation between behavioural effects and stimulation of adenylate cyclase activity in vitro. Eur. J. Pharmacol. 213, 259–267