PEI 25K is a powerful, trusted, and cost-effective transient transfection reagent. In HEK293 and CHO expression systems, PEI offers consistently high gene expression on a wide scale (96 well plates up to 100 L bioreactors). Each year, more researchers and companies turn to Polysciences PEI to gain a critical edge in their work. Relative to most other options, using PEI to prepare transfection reagents in-house can offer as much as a 40% reduction in total transfection costs.
polysciences是一家化学品制造公司,产品广泛应用于各个科研领域。公司成立于1961年,起初为电子显微镜提供纳米级样本制备方案,帮助科学家揭示未知领域。随后,开拓了在病理(组织研究)应用产品,使组织除了石蜡包埋外,还能够包埋在塑料块中;开发染料和染色剂,以实现更好的样品观测方式。与政府机构合作,开发了用于诊断试剂盒应的聚合物微球。与美国国家癌症中心合作,开发天然产物分离和纯化产品,并用于紫杉醇的初步临床试验。继而开发出超顺磁珠,用于DNA、蛋白质和肽的研究。Polysciences的高纯度单体和聚合物产品在医疗器械中有许多应用,并不断开发和增强其性能。近期业务扩展到电子产品,Polysciences的精密微粒子产品拓展了纳米技术应用中测量精度。公司秉承为应用而研发,目前已拥有超过3000种产品。PolysciencesInc.致力于提供先进的技术、制造能力和技术支持,帮助客户实现他们的目标。
Polysciences, Inc. 成立于1961年,总部位于宾夕法尼亚州沃灵顿,是一家生产研发化学产品的公司。该公司的产品种类已经累计超过3000种,其产品的特点是体积小,附加值高。 Polysciences产品主要包含: 1、 单体和聚合物 2、 微球和粒子(有机、无机、可生物降解、磁珠、荧光素、染料、特异性抗体和蛋白包被颗粒,直径从40nm到10mm)用于核酸提取、蛋白分离和纯化等。 3、 高性能粘合剂、涂料和密封剂 国际上推出了一些阳离子聚合物基因转染技术,以其适用宿主范围广,操作简便,对细胞毒性小,转染效率高受到研究者们的青睐。其中树枝状聚合物(Dendrimers)和Polysciences聚乙烯亚胺(Polyethylenimine,PEI)的转染性能最佳,但树枝状聚合物的结构不易于进一步改性,且其合成工艺复杂。Polysciences聚乙烯亚胺是一种具有较高的阳离子电荷密度的有机大分子,每相隔二个碳个原子,即每“第三个原子都是质子化的氨基氮原子,使得聚合物网络在任何pH下都能充当有效的“质子海绵”(protonsponge)体。这种聚阳离子能将各种报告基因转入各种种属细胞,其效果好于脂质聚酰胺,经进一步的改性后,其转染性能好于树枝状聚合物,而且它的细胞毒性低。大量实验证明,PEI是非常有希望的基因治疗载体。目前在设计更复杂的基因载体时,PEI经常做为核心组成成分。 转染技术新宠-Polysciences阳离子聚合物基因转染技术 其优点:适用宿主广泛,操作简便,细胞毒性小,转染率高。其中聚乙烯亚胺(PEI)的转染性能最好。聚乙烯亚胺是一种具有较高的阳离子电荷密度的有机大分子,每相隔两个碳原子,就是第三个原子都是质子化的氨基氮原子,使得聚合物网络在任何PH下都能充当有效的“质子海绵”体。这种聚阳离子能将各种报告基因转入各种种属细胞,其效果好于脂质聚酰胺,而且细胞毒性低。大量实验证明,PEI是非常有希望的基因治疗载体。目前在设计更复杂的基因载体时,PEI经常做为核心组成成分。 Polysciences线性聚乙烯亚胺(LinePEI)转染复合物的细胞毒性低,有利于细胞定位,而且转染率极高。 Polysciences公司的两款明星产品线性聚乙烯亚胺(23966-1和24765-1)近年来越来越多的受到研究者们的青睐。其产品被运用到大量的转染实验中,也出现在大量的文献中。
美国POLYSCIENCES公司成立于1961年,主要生产和经营LIFESCIENCES生命科学(胶体金,不含甲醛的甲醇等),病理学和显镜学微球和粒子和磁珠各种单体和聚体等产品。polysciences公司是世界上zui大zui全的多聚化合物供应商,同时是世界*的免疫学,组织化学试剂耗材供应商.
ebiomall.com
>
>
>
>
>
>
>
>
>
>
>
1.微囊的形态与粒径及分布
2.微囊的载药量与包封率
3.微囊药物的释放速率
4.有机溶剂残留量
微囊与微球的载体材料
常用的载体材料:
1.天然高分子材料
(1)明胶
明胶是由氨基酸与肽交联形成的直链聚合物。
明胶分酸法明胶(A型)和碱法明胶(B型)。A型明胶等电点为7~9,B型明胶稳定而不易长菌,等电点为4.7~5.0。两者的成囊性无明显差别,作囊材的用量为20~100g/L 。
可生物降解,几乎无抗原性。
(2) 阿拉伯胶
一般常与明胶等量配合使用,作囊材的用量为20~100g/L,亦可与白蛋白配合作复合材料。
(3) 海藻酸盐
系多糖类化合物,常用稀碱从褐藻中提取而得。海藻酸钠可溶于不同温度的水中,不溶于乙醇、乙醚及其它有机溶剂;不同Mav产品的粘度有差异。可与甲壳素或聚赖氨酸合用作复合材料。因海藻酸钙不溶于水,故海藻酸钠可用CaCl2固化成囊。
(4) 壳聚糖
壳聚糖是由甲壳素脱乙酰化后制得的一种天然聚阳离子型多糖,可溶于酸或酸性水溶液,无毒、无抗原性,在体内能被溶菌酶等酶解,具有优良的生物降解性和成膜性,在体内可溶胀成水凝胶。
2.半合成高分子材料
作囊材的半合成高分子材料多系纤维素衍生物,其特点是毒性小、粘度大、成盐后溶解度增大。
(1) 羧甲基纤维素盐(CMC-Na)
常与明胶配合作复合囊材,一般分别配1~5g/L CMC-Na及30g/L明胶,再按体积比2:1混合。CMC-Na遇水溶胀,体积可增大10倍,在酸性液中不溶。水溶液粘度大,有抗盐能力和一定的热稳定性,不会发酵,也可以制成铝盐CMC-A1单独作囊材。
(2)醋酸纤维素酞酸酯(CAP)
在强酸中不溶解,可溶于pH>6的水溶液,在二氧六环、丙酮中溶解,水、乙醇中不溶。用作囊材时可单独使用,用量一般在30g/L左右,也可与明胶配合使用。
(3)乙基纤维素(EC)
化学稳定性高,适用于多种药物的微囊化,不溶于水、甘油或丙二醇,可溶于乙醇,易溶于乙醚,遇强酸易水解,故对强酸性药物不适宜。用乙基纤维素为囊材时,可加入增塑剂改善其可塑性。
(4)甲基纤维素(MC)
在水中溶胀成澄清或微浑浊的胶体溶液,在无水乙醇、氯仿或乙醚中不溶。用作囊材的用量为10~30g/L,亦可与明胶、CMC-Na、聚维酮(PVP)等配合作复合囊材。
(5)羟丙甲纤维素(HPMC)
冷水中能溶胀成澄清或微浑浊的胶体溶液,pH值4.0~8.0(1%溶液,25℃) ,无水乙醇、乙醚 或丙酮中几乎不溶。
3.合成高分子材料
有生物不降解的和生物降解的两类。
生物不降解、且不受pH影响的囊材有聚酰胺、硅橡胶等。
生物不降解、但可在一定pH条件下溶解的囊材有聚丙烯酸树脂类、聚乙烯醇等。
生物降解的材料:聚碳酸酯、聚氨基酸、聚乳酸(PLA)、乙交酯丙交酯共聚物(PLGA)、聚乳酸-聚乙二醇嵌段共聚物(PLA-PEG)ε-己内酯与丙交酯共聚物等。特点:无毒、成膜性好、化学稳定性高,可用于注射。
聚酯类是迄今研究最多、应用最广的生物降解的合成高分子,它们基本上都是羟基酸或其内酯的聚合物。
常用的羟基酸是乳酸(1actic acid)和羟基乙酸(glycolic acid)。乳酸缩合得到的聚酯称聚乳酸,用PLA表示,由羟基乙酸缩合得的聚酯称聚羟基乙酸,用PGA表示;由乳酸与羟基乙酸缩合而成的,用PLGA表示,亦可用PLG表示。有的共聚物经美国FDA批准,也作注射用微球、微囊以及组织埋植剂的载体材料。
一种是奥曲肽微球商品名“善龙”一种是兰瑞肽微球商品名“索马杜林”
两种药物都是纯进口产品因工艺特殊国际上至今都没有仿制品出现
国外已经有了二代长效生长抑素类似物是凝胶预充剂型的长效兰瑞肽
其工艺比微球制剂更先进了一步患者可做到像胰岛素一样进行自我注射
注射周期也比现有的28天注射间隔更长能达到56天或天的注射周期
微球的制备方法是给药途径选择和控制药物释放的关键。目前,海藻酸钠微球的制备方法主要有乳化离子交联法、微乳法、复凝聚法、锐孔凝固浴法、静电滴法,以及对上述方法的改良制法等。
1.乳化离子交联法该法系指将药物与海藻酸钠溶液混合均匀后滴加至一定的油相中搅拌,制得W/O乳剂,然后加入离子交联剂交联固化,搅拌,分离得载药微球[4]。刘善奎等[5]利用此法制备了DNA疫苗海藻酸钠微球,李国明等[6]在交联固化后,继续与壳聚糖溶液反应制备了盐酸阿米替林海藻酸钠-壳聚糖微球。Ramesh等[7]改良此法,制备了利心平海藻酸钠-甲基纤维素(MC)共混微球,研究表明,随着微球中MC量的增加,微球的吸水性降低,MC的量与微球的释药速率有一定的关系,这类微球密度较低,可以在胃环境下保留12h以上,有效地提高了利心平的生物利用度。
2.微乳法此法系将一定量的海藻酸钠、药物溶于蒸馏水中搅拌互混,在超声和高速搅拌的条件下将一定量混合液逐滴加入到油相中,形成微乳体系。再将CaCl2溶液逐滴加入到上述混合液中,继续搅拌,进行洗涤,冷冻干燥保存,即得海藻酸钠载药微球。该法多用于磁性微球的制备,以获得粒径小、均匀、靶向性强的载药磁微球。颜秋平等[8]应用该法制得具强磁响应性和缓释效果的阿霉素磁性纳米微球,研究发现此微球粒径小,分散性好,具磁靶向功能,有望成为一种优良靶向肿瘤的药物载体。苏科等[9]对此法进行了进一步改良,在已获得的阿霉素磁性微球基础上,又加入水溶性二亚胺和单抗人转蛋白进行旋转混合,分离、冷冻干燥后获得了人转铁蛋白修饰海藻酸钠载阿霉素药物纳米微球(TDA)。此外,Chuah等[10]在此基础上改进,应用甲基纤维素乳化法联合外部凝胶法制得了大小均一的海藻酸钠微球。
3.复凝聚法由于海藻酸钠为阴离子聚合物,可与阳离子聚合物用复凝聚法制备复合微球。目前常用来与海藻酸盐复凝聚成球的主要有壳聚糖,此外还常与聚赖氨酸一起制备复合微球。这样得到的微球的膜壁强度较强,适合实际应用。此法系将海藻酸钠固体用蒸馏水溶解并分散均匀,加入表面活性剂,继续搅拌形成W/O型乳液。将壳聚糖以乙酸溶解,再加入CaCl2及药物于分液漏斗中,搅拌下逐滴加入到上述W/O型乳液中。加入戊二醛固化后,加正丁醇,充分振摇后放置,离心得沉淀物,即为壳聚糖-海藻酸钠载药微球。李柱来等[11]以壳聚糖-海藻酸钠为基质材料,在乳化体系中以复凝聚法制备头孢曲松微球,该微球具有良好的溶胀和缓释性能。王津等[12]应用复凝聚法制备了出球形度好,均匀圆整,粒径小,包封率较高,稳定性较好和具明显缓释作用的布洛芬壳聚糖-海藻酸钠缓释微球。
4.锐孔凝固浴法该法系将药物加入到海藻酸钠溶液中,搅拌均匀,将混合物通过注射器或微孔硅胶管滴入到CaCl2溶液中,搅拌固化,分离微球移至壳聚糖溶液中,继续搅拌交联,分离微球并用蒸馏水洗涤干燥后得载药微球。高春凤等[13]应用此法制得雷公藤多苷提取物壳聚糖-海藻酸钠缓释微球,研究表明海藻酸钠浓度、壳聚糖浓度、CaCl2浓度以及海藻酸钠和药物质量之比对包埋率、载药量和体外释放均有影响,而交联固化时间对包埋率和载药量有影响,对体外释放影响不明显。黄岚等[14]将阳离子-β环糊精聚合物(CP-β-CD)与胰岛素形成复合物后,制备了含有此复合物的海藻酸钠/壳聚糖微球系统,并应用于胰岛素口服系统,结果表明CP-β-CD的加入,能有效的提高胰岛素的包封率以及在模拟肠液中的释放,是一种非常有前景的胰岛素口服制剂的助剂。
5.静电滴法该法系将囊材与药液搅拌混合,搅拌条件下加进海藻酸钠溶液,在注射器推动力和电场力作用下,原料液滴入低温CaCl2溶液,
迅速固化,形成海藻酸钙凝胶微球,浸泡,清洗,真空避光室温干燥。谷继伟等[15]用此法制得粒径小于1mm的奥沙普秦壳聚糖-海藻酸钠缓释微球。
满意请采纳谢谢展开

![]()
暂无品牌问答
