tech_banner
...077, As Anti-Cancer Agents | ACS Medicinal Chemistry Letters
ACS Med. Chem. Lett.All Publications/WebsiteOR SEARCH CITATIONS Recently ViewedYou have not visited any articles yet, Please visit some articles to see contents here. Received28 May 2013Accepted12 September 2013Published online17 September 2013Published inissue 14 November 2013https://doi.org/10.1021/ml400204nCopyright © 2013 American Chemical SocietyRIGHTS & PERMISSIONSArticle Views2500Altmetric-Citations82LEARN ABOUT THESE METRICSArticle Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.Get e-AlertsAbstractThe rhodacyanine, MKT-077, has antiproliferative activity against cancer cell lines through its ability to inhibit members of the heat shock protein 70 (Hsp70) family of molecular chaperones. However, MKT-077 is rapidly metabolized, which limits its use as either a chemical probe or potential therapeutic. We report the synthesis and characterization of MKT-077 analogues designed for greater stability. The most potent molecules, such as 30 (JG-98), were at least 3-fold more active than MKT-077 against the breast cancer cell lines MDA-MB-231 and MCF-7 (EC50 values of 0.4 ± 0.03 and 0.7 ± 0.2 μM, respectively). The analogues modestly destabilized the chaperone clients, Akt1 and Raf1, and induced apoptosis in these cells. Further, the microsomal half-life of JG-98 was improved at least 7-fold (t1/2 = 37 min) compared to MKT-077 (t1/2 5 min). Finally, NMR titration experiments suggested that these analogues bind an allosteric site that is known to accommodate MKT-077. These studies advance MKT-077 analogues as chemical probes for studying Hsp70s roles in cancer.KEYWORDS:Breast cancer mortalin Hsp90 proteostasis p53Supporting InformationARTICLE SECTIONSJump ToCompound characterization and methods for syntheses and biological studies. This material is available free of charge via the Internet at http://pubs.acs.org.ml400204n_si_001.pdf (268.52 kb) Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html. Cited ByThis article is cited by 82 publications.Andrew J. Ambrose, Eli Chapman. Function, Therapeutic Potential, and Inhibition of Hsp70 Chaperones. Journal of Medicinal Chemistry 2021, 64 (11) , 7060-7082. https://doi.org/10.1021/acs.jmedchem.0c02091Mariarosaria Ferraro, Ilda D’Annessa, Elisabetta Moroni, Giulia Morra, Antonella Paladino, Silvia Rinaldi, Federica Compostella, Giorgio Colombo. Allosteric Modulators of HSP90 and HSP70: Dynamics Meets Function through Structure-Based Drug Design. Journal of Medicinal Chemistry 2019, 62 , 60-87. https://doi.org/10.1021/acs.jmedchem.8b00825Silvia Rinaldi, Victoria A. Assimon, Zapporah T. Young, Giulia Morra, Hao Shao, Isabelle R. Taylor, Jason E. Gestwicki, Giorgio Colombo. A Local Allosteric Network in Heat Shock Protein 70 (Hsp70) Links Inhibitor Binding to Enzyme Activity and Distal Protein–Protein Interactions. ACS Chemical Biology 2018, 13 (11) , 3142-3152. https://doi.org/10.1021/acschembio.8b00712Hao Shao, Xiaokai Li, Michael A. Moses, Luke A. Gilbert, Chakrapani Kalyanaraman, Zapporah T. Young, Margarita Chernova, Sara N. Journey, Jonathan S. Weissman, Byron Hann, Matthew P. Jacobson, Len Neckers, Jason E. Gestwicki. Exploration of Benzothiazole Rhodacyanines as Allosteric Inhibitors of Protein–Protein Interactions with Heat Shock Protein 70 (Hsp70). Journal of Medicinal Chemistry 2018, 61 (14) , 6163-6177. https://doi.org/10.1021/acs.jmedchem.8b00583Claire M. Ouimet, Hao Shao, Jennifer N. Rauch, Mohamed Dawod, Bryce Nordhues, Chad A. Dickey, Jason E. Gestwicki, and Robert T. Kennedy . Protein Cross-Linking Capillary Electrophoresis for Protein–Protein Interaction Analysis. Analytical Chemistry 2016, 88 (16) , 8272-8278. https://doi.org/10.1021/acs.analchem.6b02126Mackenzie D. Martin, Jeremy D. Baker, Amirthaa Suntharalingam, Bryce A. Nordhues, Lindsey B. Shelton, Dali Zheng, Jonathan J. Sabbagh, Timothy A.J. Haystead, Jason E. Gestwicki, and Chad A. Dickey . Inhibition of Both Hsp70 Activity and Tau Aggregation in Vitro Best Predicts Tau Lowering Activity of Small Molecules. ACS Chemical Biology 2016, 11 , 2041-2048. https://doi.org/10.1021/acschembio.6b00223Stephen Boulton and Giuseppe Melacini . Advances in NMR Methods To Map Allosteric Sites: From Models to Translation. Chemical Reviews 2016, 116 (11) , 6267-6304. https://doi.org/10.1021/acs.chemrev.5b00718Lin Zhang, Jinhuan Dong, Xianxiu Xu, and Qun Liu . Chemistry of Ketene N,S-Acetals: An Overview. Chemical Reviews 2016, 116 , 287-322. https://doi.org/10.1021/acs.chemrev.5b00360Ziqian Wang, Ting Song, Zongwei Guo, Laura B. Uwituze, Yafei Guo, Hong Zhang, Hang Wang, Xiaodong Zhang, Hao Pan, Tong Ji, Fangkui Yin, Sheng Zhou, Jian Dai, Zhichao Zhang. A novel Hsp70 inhibitor specifically targeting the cancer-related Hsp70-Bim protein-protein interaction. European Journal of Medicinal Chemistry 2021, 220 , 113452. https://doi.org/10.1016/j.ejmech.2021.113452Kevin M. Tharp, Ryo Higuchi-Sanabria, Greg A. Timblin, Breanna Ford, Carlos Garzon-Coral, Catherine Schneider, Jonathon M. Muncie, Connor Stashko, Joseph R. Daniele, Andrew S. Moore, Phillip A. Frankino, Stefan Homentcovschi, Sagar S. Manoli, Hao Shao, Alicia L. Richards, Kuei-Ho Chen, Johanna ten Hoeve, Gregory M. Ku, Marc Hellerstein, Daniel K. Nomura, Karou Saijo, Jason Gestwicki, Alexander R. Dunn, Nevan J. Krogan, Danielle L. Swaney, Andrew Dillin, Valerie M. Weaver. Adhesion-mediated mechanosignaling forces mitohormesis. Cell Metabolism 2021, 33 , 1322-1341.e13. https://doi.org/10.1016/j.cmet.2021.04.017Jennifer Abrams, Taylor Arhar, Sue Ann Mok, Isabelle R. Taylor, Martin Kampmann, Jason E. Gestwicki. Functional genomics screen identifies proteostasis targets that modulate prion protein (PrP) stability. Cell Stress and Chaperones 2021, 26 , 443-452. https://doi.org/10.1007/s12192-021-01191-8Weizi Hu, Zhi Xu, Shuyi Zhu, Wenbo Sun, Xiumei Wang, Chunli Tan, Yanyan Zhang, Guangqin Zhang, Yong Xu, Jinhai Tang. Small extracellular vesicle-mediated Hsp70 intercellular delivery enhances breast cancer adriamycin resistance. Free Radical Biology and Medicine 2021, 164 , 85-95. https://doi.org/10.1016/j.freeradbiomed.2020.12.436Marina A. Mikeladze, Elizaveta A. Dutysheva, Victor G. Kartsev, Boris A. Margulis, Irina V. Guzhova, Vladimir F. Lazarev. Disruption of the Complex between GAPDH and Hsp70 Sensitizes C6 Glioblastoma Cells to Hypoxic Stress. International Journal of Molecular Sciences 2021, 22 , 1520. https://doi.org/10.3390/ijms22041520Jiahui Tao, Amandine Berthet, Y. Rose Citron, Paraskevi L. Tsiolaki, Robert Stanley, Jason E. Gestwicki, David A. Agard, Lisa McConlogue. Hsp70 chaperone blocks α-synuclein oligomer formation via a novel engagement mechanism. Journal of Biological Chemistry 2021, 296 , 100613. https://doi.org/10.1016/j.jbc.2021.100613Tommaso Felicetti, Giuseppe Manfroni, Violetta Cecchetti, Rolando Cannalire. Broad‐Spectrum Flavivirus Inhibitors: a Medicinal Chemistry Point of View. ChemMedChem 2020, 15 (24) , 2391-2419. https://doi.org/10.1002/cmdc.202000464Thibaut Barnoud, Jessica C. Leung, Julia I-Ju Leu, Subhasree Basu, Adi Narayana Reddy Poli, Joshua L.D. Parris, Alexandra Indeglia, Tetyana Martynyuk, Madeline Good, Keerthana Gnanapradeepan, Emilio Sanseviero, Rebecca Moeller, Hsin-Yao Tang, Joel Cassel, Andrew V. Kossenkov, Qin Liu, David W. Speicher, Dmitry I. Gabrilovich, Joseph M. Salvino, Donna L. George, Maureen E. Murphy. A Novel Inhibitor of HSP70 Induces Mitochondrial Toxicity and Immune Cell Recruitment in Tumors. Cancer Research 2020, 80 (23) , 5270-5281. https://doi.org/10.1158/0008-5472.CAN-20-0397Zongwei Guo, Ting Song, Ziqian Wang, Donghai Lin, Keke Cao, Peng Liu, Yingang Feng, Xiaodong Zhang, Peiran Wang, Fangkui Yin, Jian Dai, Sheng Zhou, Zhichao Zhang. The chaperone Hsp70 is a BH3 receptor activated by the pro-apoptotic Bim to stabilize anti-apoptotic clients. Journal of Biological Chemistry 2020, 295 (37) , 12900-12909. https://doi.org/10.1074/jbc.RA120.013364Amanda K. Davis, Natalie F. McMyn, Miranda Lau, Yoshihiro Morishima, Yoichi Osawa. Hsp70:CHIP Ubiquitinates Dysfunctional but Not Native Neuronal NO Synthase. Molecular Pharmacology 2020, 98 , 243-249. https://doi.org/10.1124/mol.120.119990Steven De Almeida, Mathilde Regimbeau, Gaëtan Jego, Carmen Garrido, François Girodon, François Hermetet. Heat Shock Proteins and PD-1/PD-L1 as Potential Therapeutic Targets in Myeloproliferative Neoplasms. Cancers 2020, 12 , 2592. https://doi.org/10.3390/cancers12092592Yu-Siang Su, Pei-Yu Hsieh, Jun-Syuan Li, Ying-Hsuan Pao, Chi-Ju Chen, Lih-Hwa Hwang. The Heat Shock Protein 70 Family of Chaperones Regulates All Phases of the Enterovirus A71 Life Cycle. Frontiers in Microbiology 2020, 11 https://doi.org/10.3389/fmicb.2020.01656Joseph W. Jackson, Genesis M. Rivera‐Marquez, Kristin Beebe, Andy D. Tran, Jane B. Trepel, Jason E. Gestwicki, Brian S. J. Blagg, Shuichi Ohkubo, Leonard M. Neckers. Pharmacologic dissection of the overlapping impact of heat shock protein family members on platelet function. Journal of Thrombosis and Haemostasis 2020, 18 , 1197-1209. https://doi.org/10.1111/jth.14758Ming Xu, Yuan Zhang, Minghua Cui, Xinyue Wang, Zhenhua Lin. Mortalin contributes to colorectal cancer by promoting proliferation and epithelial–mesenchymal transition. IUBMB Life 2020, 72 , 771-781. https://doi.org/10.1002/iub.2176Amanda K. Davis, William B. Pratt, Andrew P. Lieberman, Yoichi Osawa. Targeting Hsp70 facilitated protein quality control for treatment of polyglutamine diseases. Cellular and Molecular Life Sciences 2020, 77 , 977-996. https://doi.org/10.1007/s00018-019-03302-2Jay K. Singh, Darren M. Hutt, Bradley Tait, Naihsuan C. Guy, Jeffrey C. Sivils, Nina R. Ortiz, Ashley N. Payan, Shravan Kumar Komaragiri, Jazzmin Jovonna Owens, David Culbertson, Laura J. Blair, Chad Dickey, Szu Yu Kuo, Dan Finley, H. Jane Dyson, Marc B. Cox, Jaideep Chaudhary, Jason E. Gestwicki, William E. Balch. Management of Hsp90-Dependent Protein Folding by Small Molecules Targeting the Aha1 Co-Chaperone. Cell Chemical Biology 2020, 27 , 292-305.e6. https://doi.org/10.1016/j.chembiol.2020.01.008Hao Shao, Jason E. Gestwicki. Neutral analogs of the heat shock protein 70 (Hsp70) inhibitor, JG-98. Bioorganic Medicinal Chemistry Letters 2020, 30 , 126954. https://doi.org/10.1016/j.bmcl.2020.126954Isabelle R. Taylor, Victoria A. Assimon, Szu Yu Kuo, Silvia Rinaldi, Xiaokai Li, Zapporah T. Young, Giulia Morra, Keith Green, Daniel Nguyen, Hao Shao, Sylvie Garneau-Tsodikova, Giorgio Colombo, Jason E. Gestwicki. Tryptophan scanning mutagenesis as a way to mimic the compound-bound state and probe the selectivity of allosteric inhibitors in cells. Chemical Science 2020, 11 , 1892-1904. https://doi.org/10.1039/C9SC04284ALaurence Dubrez, Sébastien Causse, Natalia Borges Bonan, Baptiste Dumétier, Carmen Garrido. Heat-shock proteins: chaperoning DNA repair. Oncogene 2020, 39 , 516-529. https://doi.org/10.1038/s41388-019-1016-yAhmed Abdelhameed, Xiaoping Liao, Craig A. McElroy, April C. Joice, Liva Rakotondraibe, Junan Li, Carla Slebodnick, Pu Guo, W. David Wilson, Karl A. Werbovetz. Synthesis and antileishmanial evaluation of thiazole orange analogs. Bioorganic Medicinal Chemistry Letters 2020, 30 , 126725. https://doi.org/10.1016/j.bmcl.2019.126725Chao Wang, Samantha M Scott, Shuhong Sun, Pei Zhao, Darren M Hutt, Hao Shao, Jason E Gestwicki, William E Balch. Individualized management of genetic diversity in Niemann-Pick C1 through modulation of the Hsp70 chaperone system. Human Molecular Genetics 2020, 29 , 1-19. https://doi.org/10.1093/hmg/ddz215Mohammed I.Y. Elmallah, Marine Cordonnier, Valentin Vautrot, Gaëtan Chanteloup, Carmen Garrido, Jessica Gobbo. Membrane-anchored heat-shock protein 70 (Hsp70) in cancer. Cancer Letters 2020, 469 , 134-141. https://doi.org/10.1016/j.canlet.2019.10.037Jemma Day, Armin Passecker, Hans-Peter Beck, Ioannis Vakonakis. The Plasmodium falciparum Hsp70-x chaperone assists the heat stress response of the malaria parasite. The FASEB Journal 2019, 33 (12) , 14611-14624. https://doi.org/10.1096/fj.201901741RKonstantin L. Obydennov, Tatiana V. Glukhareva. Synthesis and properties of bi- and tricyclic 1,3-thiazoline/thiazolidine assemblies linked by an exocyclic С=С double bond. Chemistry of Heterocyclic Compounds 2019, 55 (11) , 1013-1034. https://doi.org/10.1007/s10593-019-02571-wClaire M. Ouimet, Cara I. D’Amico, Robert T. Kennedy. Droplet sample introduction to microchip gel and zone electrophoresis for rapid analysis of protein-protein complexes and enzymatic reactions. Analytical and Bioanalytical Chemistry 2019, 411 (23) , 6155-6163. https://doi.org/10.1007/s00216-019-02006-7Bonam, Ruff, Muller. HSPA8/HSC70 in Immune Disorders: A Molecular Rheostat that Adjusts Chaperone-Mediated Autophagy Substrates. Cells 2019, 8 , 849. https://doi.org/10.3390/cells8080849Steven M. Moss, Isabelle R. Taylor, Davide Ruggero, Jason E. Gestwicki, Kevan M. Shokat, Shaeri Mukherjee. A Legionella pneumophila Kinase Phosphorylates the Hsp70 Chaperone Family to Inhibit Eukaryotic Protein Synthesis. Cell Host Microbe 2019, 25 , 454-462.e6. https://doi.org/10.1016/j.chom.2019.01.006Jason E. Gestwicki, Hao Shao. Inhibitors and chemical probes for molecular chaperone networks. Journal of Biological Chemistry 2019, 294 , 2151-2161. https://doi.org/10.1074/jbc.TM118.002813Shuhei Taguwa, Ming-Te Yeh, T. Kelly Rainbolt, Arabinda Nayak, Hao Shao, Jason E. Gestwicki, Raul Andino, Judith Frydman. Zika Virus Dependence on Host Hsp70 Provides a Protective Strategy against Infection and Disease. Cell Reports 2019, 26 , 906-920.e3. https://doi.org/10.1016/j.celrep.2018.12.095Julia A. Yaglom, Yongmei Wang, Amy Li, Zhenghu Li, Stephano Monti, Ilya Alexandrov, Xiongbin Lu, Michael Y. Sherman. Cancer cell responses to Hsp70 inhibitor JG-98: Comparison with Hsp90 inhibitors and finding synergistic drug combinations. Scientific Reports 2018, 8 https://doi.org/10.1038/s41598-017-14900-0Yun Chen, Claribel Murillo-Solano, Melanie G. Kirkpatrick, Tetyana Antoshchenko, Hee-Won Park, Juan C. Pizarro. Repurposing drugs to target the malaria parasite unfolding protein response. Scientific Reports 2018, 8 https://doi.org/10.1038/s41598-018-28608-2Fisayo Olotu, Emmanuel Adeniji, Clement Agoni, Imane Bjij, Shama Khan, Ahmed Elrashedy, Mahmoud Soliman. An update on the discovery and development of selective heat shock protein inhibitors as anti-cancer therapy. Expert Opinion on Drug Discovery 2018, 13 (10) , 903-918. https://doi.org/10.1080/17460441.2018.1516035Dmitry Sverchinsky, Alina Nikotina, Elena Komarova, Elena Mikhaylova, Nikolay Aksenov, Vladimir Lazarev, Vladimir Mitkevich, Roman Suezov, Dmitry Druzhilovskiy, Vladimir Poroikov, Boris Margulis, Irina Guzhova. Etoposide-Induced Apoptosis in Cancer Cells Can Be Reinforced by an Uncoupled Link between Hsp70 and Caspase-3. International Journal of Molecular Sciences 2018, 19 , 2519. https://doi.org/10.3390/ijms19092519Michael A. Moses, Yeong Sang Kim, Genesis M. Rivera-Marquez, Nobu Oshima, Matthew J. Watson, Kristin E. Beebe, Catherine Wells, Sunmin Lee, Abbey D. Zuehlke, Hao Shao, William E. Bingman, Vineet Kumar, Sanjay V. Malhotra, Nancy L. Weigel, Jason E. Gestwicki, Jane B. Trepel, Leonard M. Neckers. Targeting the Hsp40/Hsp70 Chaperone Axis as a Novel Strategy to Treat Castration-Resistant Prostate Cancer. Cancer Research 2018, 78 (14) , 4022-4035. https://doi.org/10.1158/0008-5472.CAN-17-3728Britney N. Lizama, Amy M. Palubinsky, BethAnn McLaughlin. Alterations in the E3 ligases Parkin and CHIP result in unique metabolic signaling defects and mitochondrial quality control issues. Neurochemistry International 2018, 117 , 139-155. https://doi.org/10.1016/j.neuint.2017.08.013Ayman N. Abunimer, Heba Mohammed, Katherine L. Cook, David R. Soto-Pantoja, Maria Mercedes Campos, Mones S. Abu-Asab. Mitochondrial autophagosomes as a mechanism of drug resistance in breast carcinoma. Ultrastructural Pathology 2018, 42 , 170-180. https://doi.org/10.1080/01913123.2017.1419328Isabelle R. Taylor, Bryan M. Dunyak, Tomoko Komiyama, Hao Shao, Xu Ran, Victoria A. Assimon, Chakrapani Kalyanaraman, Jennifer N. Rauch, Matthew P. Jacobson, Erik R.P. Zuiderweg, Jason E. Gestwicki. High-throughput screen for inhibitors of protein–protein interactions in a reconstituted heat shock protein 70 (Hsp70) complex. Journal of Biological Chemistry 2018, 293 (11) , 4014-4025. https://doi.org/10.1074/jbc.RA117.001575Katherine M. Byrd, Brian S.J Blagg. Chaperone substrate provides missing link for cancer drug discovery. Journal of Biological Chemistry 2018, 293 , 2381-2382. https://doi.org/10.1074/jbc.H118.001591Laura C. Cesa, Hao Shao, Sharan R. Srinivasan, Eric Tse, Chetali Jain, Erik R.P Zuiderweg, Daniel R. Southworth, Anna K. Mapp, Jason E. Gestwicki. X-linked inhibitor of apoptosis protein (XIAP) is a client of heat shock protein 70 (Hsp70) and a biomarker of its inhibition. Journal of Biological Chemistry 2018, 293 , 2370-2380. https://doi.org/10.1074/jbc.RA117.000634Christophe Boudesco, Sebastien Cause, Gaëtan Jego, Carmen Garrido. Hsp70: A Cancer Target Inside and Outside the Cell. 2018,,, 371-396. https://doi.org/10.1007/978-1-4939-7477-1_27Michael A. Moses, Abbey D. Zuehlke, Len Neckers. Molecular Chaperone Inhibitors. 2018,,, 21-40. https://doi.org/10.1007/978-3-319-69042-1_2Tuoen Liu, Shousong Cao. Heat Shock Protein 70 and Cancer. 2018,,, 93-111. https://doi.org/10.1007/978-3-319-89551-2_5Sharan R. Srinivasan, Laura C. Cesa, Xiaokai Li, Olivier Julien, Min Zhuang, Hao Shao, Jooho Chung, Ivan Maillard, James A. Wells, Colin S. Duckett, Jason E. Gestwicki. Heat Shock Protein 70 (Hsp70) Suppresses RIP1-Dependent Apoptotic and Necroptotic Cascades. Molecular Cancer Research 2018, 16 , 58-68. https://doi.org/10.1158/1541-7786.MCR-17-0408Mark R Woodford, Rebecca A Sager, Elijah Marris, Diana M Dunn, Adam R Blanden, Ryan L Murphy, Nicholas Rensing, Oleg Shapiro, Barry Panaretou, Chrisostomos Prodromou, Stewart N Loh, David H Gutmann, Dimitra Bourboulia, Gennady Bratslavsky, Michael Wong, Mehdi Mollapour. Tumor suppressor Tsc1 is a new Hsp90 co‐chaperone that facilitates folding of kinase and non‐kinase clients. The EMBO Journal 2017, 36 (24) , 3650-3665. https://doi.org/10.15252/embj.201796700Dmitry V. Sverchinsky, Vladimir F. Lazarev, Pavel I. Semenyuk, Vladimir A. Mitkevich, Irina V. Guzhova, Boris A. Margulis. Peptide fragments of Hsp70 modulate its chaperone activity and sensitize tumor cells to anti-cancer drugs. FEBS Letters 2017, 591 (24) , 4074-4082. https://doi.org/10.1002/1873-3468.12913Birgit Honrath, Isabell Metz, Nadia Bendridi, Jennifer Rieusset, Carsten Culmsee, Amalia M Dolga. Glucose-regulated protein 75 determines ER–mitochondrial coupling and sensitivity to oxidative stress in neuronal cells. Cell Death Discovery 2017, 3 https://doi.org/10.1038/cddiscovery.2017.76Anna Bielenica, Daniel Szulczyk, Wioletta Olejarz, Silvia Madeddu, Gabriele Giliberti, Ilona B. Materek, Anna E. Koziol, Marta Struga. 1H-Tetrazol-5-amine and 1,3-thiazolidin-4-one derivatives containing 3-(trifluoromethyl)phenyl scaffold: Synthesis, cytotoxic and anti-HIV studies. Biomedicine Pharmacotherapy 2017, 94 , 804-812. https://doi.org/10.1016/j.biopha.2017.07.152K. Sangeetha, R.P. Sasikala, K.S. Meena. Pharmacophore modeling, virtual screening and molecular docking of ATPase inhibitors of HSP70. Computational Biology and Chemistry 2017, 70 , 164-174. https://doi.org/10.1016/j.compbiolchem.2017.05.011Emily V. Nelson, Jennifer R. Pacheco, Adam J. Hume, Tessa N. Cressey, Laure R. Deflubé, John B. Ruedas, John H. Connor, Hideki Ebihara, Elke Mühlberger. An RNA polymerase II-driven Ebola virus minigenome system as an advanced tool for antiviral drug screening. Antiviral Research 2017, 146 , 21-27. https://doi.org/10.1016/j.antiviral.2017.08.005Miguel Garzón, Elsa M. Arce, Raju Jannapu Reddy, Paul W. Davies. General Entry into -Heteroatom-Linked -(Hetero)aryl-Imidazole Motifs by Gold-Catalysed Formal [3+2]-Dipolar Cycloaddition. Advanced Synthesis Catalysis 2017, 359 (11) , 1837-1843. https://doi.org/10.1002/adsc.201700249Anastasia Zhuravleva, Dmitry M. Korzhnev. Protein folding by NMR. Progress in Nuclear Magnetic Resonance Spectroscopy 2017, 100 , 52-77. https://doi.org/10.1016/j.pnmrs.2016.10.002Ilda D\'Annessa, Sara Sattin, Jiahui Tao, Marzia Pennati, Carlos Sànchez-Martìn, Elisabetta Moroni, Andrea Rasola, Nadia Zaffaroni, David A. Agard, Anna Bernardi, Giorgio Colombo. Design of Allosteric Stimulators of the Hsp90 ATPase as New Anticancer Leads. Chemistry - A European Journal 2017, 23 (22) , 5188-5192. https://doi.org/10.1002/chem.201700169Jianming Wu, Tuoen Liu, Zechary Rios, Qibing Mei, Xiukun Lin, Shousong Cao. Heat Shock Proteins and Cancer. Trends in Pharmacological Sciences 2017, 38 , 226-256. https://doi.org/10.1016/j.tips.2016.11.009Corey N. Cunningham, Kaiyu He, Anoop Arunagiri, Adrienne W. Paton, James C. Paton, Peter Arvan, Billy Tsai. Chaperone-Driven Degradation of a Misfolded Proinsulin Mutant in Parallel With Restoration of Wild-Type Insulin Secretion. Diabetes 2017, 66 , 741-753. https://doi.org/10.2337/db16-1338Tuoen Liu, Kilannin Krysiak, Cara Lunn Shirai, Sanghyun Kim, Jin Shao, Matthew Ndonwi, Matthew J. Walter, . Knockdown of HSPA9 induces TP53-dependent apoptosis in human hematopoietic progenitor cells. PLOS ONE 2017, 12 , e0170470. https://doi.org/10.1371/journal.pone.0170470Ning Yang, Michael Weinfeld, Hélène Lemieux, Ben Montpetit, Ing Swie Goping. Photo-activation of the delocalized lipophilic cation D112 potentiates cancer selective ROS production and apoptosis. Cell Death Disease 2017, 8 , e2587-e2587. https://doi.org/10.1038/cddis.2017.19Madeline Y. Wong, Andrew S. DiChiara, Patreece H. Suen, Kenny Chen, Ngoc-Duc Doan, Matthew D. Shoulders. Adapting Secretory Proteostasis and Function Through the Unfolded Protein Response. 2017,,, 1-25. https://doi.org/10.1007/82_2017_56Mark R. Woodford, Diana M. Dunn, Adam R. Blanden, Dante Capriotti, David Loiselle, Chrisostomos Prodromou, Barry Panaretou, Philip F. Hughes, Aaron Smith, Wendi Ackerman, Timothy A. Haystead, Stewart N. Loh, Dimitra Bourboulia, Laura S. Schmidt, W. Marston Linehan, Gennady Bratslavsky, Mehdi Mollapour. The FNIP co-chaperones decelerate the Hsp90 chaperone cycle and enhance drug binding. Nature Communications 2016, 7 https://doi.org/10.1038/ncomms12037Shan Dong, Long Liu, Weining Wu, Stuart D. Armstrong, Dong Xia, Hao Nan, Julian A. Hiscox, Hongying Chen. Determination of the interactome of non-structural protein12 from highly pathogenic porcine reproductive and respiratory syndrome virus with host cellular proteins using high throughput proteomics and identification of HSP70 as a cellular factor for virus replication. Journal of Proteomics 2016, 146 , 58-69. https://doi.org/10.1016/j.jprot.2016.06.019Zapporah T. Young, Jennifer N. Rauch, Victoria A. Assimon, Umesh K. Jinwal, Misol Ahn, Xiaokai Li, Bryan M. Dunyak, Atta Ahmad, George A. Carlson, Sharan R. Srinivasan, Erik R.P. Zuiderweg, Chad A. Dickey, Jason E. Gestwicki. Stabilizing the Hsp70-Tau Complex Promotes Turnover in Models of Tauopathy. Cell Chemical Biology 2016, 23 , 992-1001. https://doi.org/10.1016/j.chembiol.2016.04.014Kateryna Morozova, Cristina C. Clement, Susmita Kaushik, Barbara Stiller, Esperanza Arias, Atta Ahmad, Jennifer N. Rauch, Victor Chatterjee, Chiara Melis, Brian Scharf, Jason E. Gestwicki, Ana-Maria Cuervo, Erik R.P. Zuiderweg, Laura Santambrogio. Structural and Biological Interaction of hsc-70 Protein with Phosphatidylserine in Endosomal Microautophagy. Journal of Biological Chemistry 2016, 291 (35) , 18096-18106. https://doi.org/10.1074/jbc.M116.736744Thomas Reid Alderson, Jin Hae Kim, John Lute Markley. Dynamical Structures of Hsp70 and Hsp70-Hsp40 Complexes. Structure 2016, 24 , 1014-1030. https://doi.org/10.1016/j.str.2016.05.011Gerolamo Vettoretti, Elisabetta Moroni, Sara Sattin, Jiahui Tao, David A. Agard, Anna Bernardi, Giorgio Colombo. Molecular Dynamics Simulations Reveal the Mechanisms of Allosteric Activation of Hsp90 by Designed Ligands. Scientific Reports 2016, 6 https://doi.org/10.1038/srep23830Jürgen Radons. The human HSP70 family of chaperones: where do we stand?. Cell Stress and Chaperones 2016, 21 , 379-404. https://doi.org/10.1007/s12192-016-0676-6Zohar Bromberg, Yoram Weiss. The Role of the Membrane-Initiated Heat Shock Response in Cancer. Frontiers in Molecular Biosciences 2016, 3 https://doi.org/10.3389/fmolb.2016.00012Shuhei Taguwa, Kevin Maringer, Xiaokai Li, Dabeiba Bernal-Rubio, Jennifer N. Rauch, Jason E. Gestwicki, Raul Andino, Ana Fernandez-Sesma, Judith Frydman. Defining Hsp70 Subnetworks in Dengue Virus Replication Reveals Key Vulnerability in Flavivirus Infection. Cell 2015, 163 , 1108-1123. https://doi.org/10.1016/j.cell.2015.10.046Sarah N. Fontaine, Mackenzie D. Martin, Elias Akoury, Victoria A. Assimon, Sergiy Borysov, Bryce A. Nordhues, Jonathan J. Sabbagh, Matt Cockman, Jason E. Gestwicki, Markus Zweckstetter, Chad A. Dickey. The active Hsc70/tau complex can be exploited to enhance tau turnover without damaging microtubule dynamics. Human Molecular Genetics 2015, 24 (14) , 3971-3981. https://doi.org/10.1093/hmg/ddv135Xiaokai Li, Teresa Colvin, Jennifer N. Rauch, Diego Acosta-Alvear, Martin Kampmann, Bryan Dunyak, Byron Hann, Blake T. Aftab, Megan Murnane, Min Cho, Peter Walter, Jonathan S. Weissman, Michael Y. Sherman, Jason E. Gestwicki. Validation of the Hsp70–Bag3 Protein–Protein Interaction as a Potential Therapeutic Target in Cancer. Molecular Cancer Therapeutics 2015, 14 , 642-648. https://doi.org/10.1158/1535-7163.MCT-14-0650Xiandan Cui, Hyo-Kyoung Choi, Young-Seok Choi, Soo-Yeon Park, Gi-Jun Sung, Yoo-Hyun Lee, Jeongmin Lee, Woo Jin Jun, Kyungsup Kim, Kyung-Chul Choi, Ho-Geun Yoon. DNAJB1 destabilizes PDCD5 to suppress p53-mediated apoptosis. Cancer Letters 2015, 357 , 307-315. https://doi.org/10.1016/j.canlet.2014.11.041Alexandra Manos-Turvey, Jeffrey L. Brodsky, Peter Wipf. The Effect of Structure and Mechanism of the Hsp70 Chaperone on the Ability to Identify Chemical Modulators and Therapeutics. 2015,,, 81-129. https://doi.org/10.1007/7355_2015_90Matthew Trendowski. Exploiting the cytoskeletal filaments of neoplastic cells to potentiate a novel therapeutic approach. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2014, 1846 , 599-616. https://doi.org/10.1016/j.bbcan.2014.09.007William B Pratt, Yoshihiro Morishima, Jason E Gestwicki, Andrew P Lieberman, Yoichi Osawa. A model in which heat shock protein 90 targets protein-folding clefts: Rationale for a new approach to neuroprotective treatment of protein folding diseases. Experimental Biology and Medicine 2014, 239 (11) , 1405-1413. https://doi.org/10.1177/1535370214539444Michelle R. Arkin, Yinyan Tang, James A. Wells. Small-Molecule Inhibitors of Protein-Protein Interactions: Progressing toward the Reality. Chemistry Biology 2014, 21 , 1102-1114. https://doi.org/10.1016/j.chembiol.2014.09.001Cláudia M Deus, Ana R Coelho, Teresa L Serafim, Paulo J Oliveira. Targeting mitochondrial function for the treatment of breast cancer. Future Medicinal Chemistry 2014, 6 (13) , 1499-1513. https://doi.org/10.4155/fmc.14.100Export articles to MendeleyGet article recommendations from ACS based on references in your Mendeley library.Export articles to MendeleyGet article recommendations from ACS based on references in your Mendeley library. Please note: If you switch to a different device, you may be asked to login again with only your ACS ID. Please note: If you switch to a different device, you may be asked to login again with only your ACS ID. Please note: If you switch to a different device, you may be asked to login again with only your ACS ID. Please login with your ACS ID before connecting to your Mendeley account.Login with ACS ID This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy. CONTINUE