tech_banner
Megazyme/D-Xylose Assay Kit/K-XYLOSE/100 assays (manual) / 1000 assays (microplate) / 1300 assays (a

The D-Xylose test kit is a novel method for the specific, convenient and rapid measurement and analysis of D-xylose in plant extracts, culture media/supernatants and other materials.

Suitable for manual, auto-analyser and microplate formats.

The influence of Aspergillus niger transcription factors AraR and XlnR in the gene expression during growth in D-xylose, L-arabinose and steam-exploded sugarcane bagasse.

de Souza, W. R., Maitan-Alfenas, G. P., de Gouvêa, P. F., Brown, N. A., Savoldi, M., Battaglia, E., Goldman, M. H. S., de Vries, R. P. & Goldman, G. H. (2013). Fungal Genetics and Biology, 60, 29-45. Link to Article Read Abstract The interest in the conversion of plant biomass to renewable fuels such as bioethanol has led to an increased investigation into the processes regulating biomass saccharification. The filamentous fungus Aspergillus niger is an important microorganism capable of producing a wide variety of plant biomass degrading enzymes. In A. niger the transcriptional activator XlnR and its close homolog, AraR, controls the main (hemi-)cellulolytic system responsible for plant polysaccharide degradation. Sugarcane is used worldwide as a feedstock for sugar and ethanol production, while the lignocellulosic residual bagasse can be used in different industrial applications, including ethanol production. The use of pentose sugars from hemicelluloses represents an opportunity to further increase production efficiencies. In the present study, we describe a global gene expression analysis of A. niger XlnR- and AraR-deficient mutant strains, grown on a D-xylose/L-arabinose monosaccharide mixture and steam-exploded sugarcane bagasse. Different gene sets of CAZy enzymes and sugar transporters were shown to be individually or dually regulated by XlnR and AraR, with XlnR appearing to be the major regulator on complex polysaccharides. Our study contributes to understanding of the complex regulatory mechanisms responsible for plant polysaccharide-degrading gene expression, and opens new possibilities for the engineering of fungi able to produce more efficient enzymatic cocktails to be used in biofuel production.

A high-throughput platform for screening milligram quantities of plant biomass for lignocellulose digestibility.

Santoro, N., Cantu, S. L., Tornqvist, C. E., Falbel, T. G., Bolivar, J. L., Patterson, S. E., Pauly, M. & Walton, J. D. (2010). BioEnergy research, 3(1), 93-102. Link to Article Read Abstract The development of a viable lignocellulosic ethanol industry requires multiple improvements in the process of converting biomass to ethanol. A key step is the improvement of the plants that are to be used as biomass feedstocks. To facilitate the identification and evaluation of feedstock plants, it would be useful to have a method to screen large numbers of individual plants for enhanced digestibility in response to combinations of specific pretreatments and enzymes. This paper describes a high-throughput digestibility platform (HTDP) for screening collections of germplasm for improved digestibility, which was developed under the auspices of the Department of Energy-Great Lakes Bioenergy Research Center (DOE-GLBRC). A key component of this platform is a custom-designed workstation that can grind and dispense 1–5 mg quantities of more than 250 different plant tissue samples in 16 h. The other steps in the processing (pretreatment, enzyme digestion, and sugar analysis) have also been largely automated and require 36 h. The process is adaptable to diverse acidic and basic, low-temperature pretreatments. Total throughput of the HTDP is 972 independent biomass samples per week. Validation of the platform was performed on brown midrib mutants of maize, which are known to have enhanced digestibility. Additional validation was performed by screening approximately 1,200 Arabidopsis mutant lines with T-DNA insertions in genes known or suspected to be involved in cell wall biosynthesis. Several lines showed highly significant (p  

Fast enzymatic saccharification of switchgrass after pretreatment with ionic liquids.

Zhao, H., Baker, G. A. & Cowins, J. V. (2010). Biotechnology progress, 26(1), 127-133. Link to Article Read Abstract The pretreatment of cellulose using ionic liquids (ILs) has been shown to be an effective method for improving the enzymatic hydrolysis of cellulose; this technique affords a fast and complete saccharification of cellulose into reducing sugars (Dadi et al., Biotechnol Bioeng. 2006; 95:904–910; Liu and Chen, Chinese Sci Bull. 2006; 51:2432–2436; Zhao et al., J Biotechnol. 2009; 139:47–54). Motivated by these advances, this study examines the effect of IL-pretreatment on the enzymatic hydrolysis of purified xylan (as a model system of hemicellulose) and switchgrass (as a real lignocellulose). The IL-pretreatment resulted in no improvement in the hydrolysis of xylan. The likely reason is that pure xylan has a low degree of polymerization (DP), and is readily biodegraded even without any pretreatment. However, in real cellulosic materials (such as switchgrass), xylan is entrapped within the cellulosic matrix, and cannot be conveniently accessed by enzymes. Our data demonstrate that the IL-pretreatment of switchgrass significantly improved the enzymatic saccharification of both cellulose (96% D-glucose yield in 24 h) and xylan (63% D-xylose yield in 24 h). The compositional analysis of switchgrass suggests a lower lignin content after IL-pretreatment. In addition, the infrared spectrum of regenerated switchgrass indicates a lower substrate crystallinity, whereas the enzyme adsorption isotherm further implies that the regenerated substrate is more accessible to enzymes. This study has further confirmed that IL-pretreatment is an effective tool in enhancing the enzymatic hydrolysis of cellulosic biomass, and allowing a more complete saccharification.

Switching Clostridium acetobutylicum to an ethanol producer by disruption of the butyrate/butanol fermentative pathway.

Lehmann, D. & Lütke-Eversloh, T. (2011). Metabolic Engineering, 13(5), 464-473. Link to Article Read Abstract Solventogenic clostridia are well-known since almost a century due to their unique capability to biosynthesize the solvents acetone and butanol. Based on recently developed genetic engineering tools, a targeted 3-hydroxybutyryl-CoA dehydrogenase (Hbd)-negative mutant of Clostridium acetobutylicum was generated. Interestingly, the entire butyrate/butanol (C4) metabolic pathway of C. acetobutylicum could be inactivated without a severe growth limitation and indicated the general feasibility to manipulate the central fermentative metabolism for product pattern alteration. Cell extracts of the mutant C. acetobutylicum hbd::int(69) revealed clearly reduced thiolase, Hbd and crotonase but increased NADH-dependent alcohol dehydrogenase enzyme activities as compared to the wildtype strain. Neither butyrate nor butanol were detected in cultures of C. acetobutylicum hbd::int(69), and the formation of molecular hydrogen was significantly reduced. Instead up to 16 and 20 g/l ethanol were produced in glucose and xylose batch cultures, respectively. Further sugar addition in glucose fed-batch fermentations increased the ethanol production to a final titer of 33 g/l, resulting in an ethanol to glucose yield of 0.38 g/g.

Process characterization and influence of alternative carbon sources and carbon-to-nitrogen ratio on organic acid production by Aspergillus oryzae DSM1863.

Ochsenreither, K., Fischer, C., Neumann, A. & Syldatk, C. (2014). Applied Microbiology and Biotechnology, 98(12), 5449-5460. Link to Article Read Abstract L-Malic acid and fumaric acid are C4 dicarboxylic organic acids and considered as promising chemical building blocks. They can be applied as food preservatives and acidulants in rust removal and as polymerization starter units. Molds of the genus Aspergillus are able to produce malic acid in large quantities from glucose and other carbon sources. In order to enhance the production potential of Aspergillus oryzae DSM 1863, production and consumption rates in an established bioreactor batch-process based on glucose were determined. At 35°C, up to 42 g/L malic acid was produced in a 168-h batch process with fumaric acid as a by-product. In prolonged shaking flask experiments (353 h), the suitability of the alternative carbon sources xylose and glycerol at a carbon-to-nitrogen (C/N) ratio of 200:1 and the influence of different C/N ratios in glucose cultivations were tested. When using glucose, 58.2 g/L malic acid and 4.2 g/L fumaric acid were produced. When applying xylose or glycerol, both organic acids are produced but the formation of malic acid decreased to 45.4 and 39.4 g/L, respectively. Whereas the fumaric acid concentration was not significantly altered when cultivating with xylose (4.5 g/L), it is clearly enhanced by using glycerol (9.3 g/L). When using glucose as a carbon source, an increase or decrease of the C/N ratio did not influence malic acid production but had an enormous influence on fumaric acid production. The highest fumaric acid concentrations were determined at the highest C/N ratio (300:1, 8.44 g/L) and lowest at the lowest C/N ratio (100:1, 0.7 g/L).

Characterization of newly isolated oleaginous yeasts - Cryptococcus podzolicus, Trichosporon porosum and Pichia segobiensis.

Schulze, I., Hansen, S., Großhans, S., Rudszuck, T., Ochsenreither, K., Syldatk, C. & Neumann, A. (2014). AMB Express, 4, 24. Link to Article Read Abstract The yeast strains Cryptococcus podzolicus, Trichosporon porosum and Pichia segobiensis were isolated from soil samples and identified as oleaginous yeast strains beneficial for the establishment of microbial production processes for sustainable lipid production suitable for several industrial applications. When cultured in bioreactors with glucose as the sole carbon source C. podzolicus yielded 31.8% lipid per dry biomass at 20°C, while T. porosum yielded 34.1% at 25°C and P. segobiensis 24.6% at 25°C. These amounts correspond to lipid concentrations of 17.97 g/L, 17.02 g/L and 12.7 g/L and volumetric productivities of 0.09 g/Lh, 0.1 g/Lh and 0.07 g/Lh, respectively. During the culture of C. podzolicus 30 g/l gluconic acid was detected as by-product in the culture broth and 12 g/L gluconic acid in T. porosum culture. The production of gluconic acid was eliminated for both strains when glucose was substituted by xylose as the carbon source. Using xylose lipid yields were 11.1 g/L and 13.9 g/L, corresponding to 26.8% and 33.4% lipid per dry biomass and a volumetric productivity of 0.07 g/Lh and 0.09 g/Lh, for C. podzolicus and T. porosum respectively. The fatty acid profile analysis showed that oleic acid was the main component (39.6 to 59.4%) in all three strains and could be applicable for biodiesel production. Palmitic acid (18.4 to 21.1%) and linolenic acid (7.5 to 18.7%) are valuable for cosmetic applications. P. segobiensis had a considerable amount of palmitoleic acid (16% content) and may be suitable for medical applications.

Characterisation of dietary fibre components in cereals and legumes used in Serbian diet.

Dodevska, M. S., Djordjevic, B. I., Sobajic, S. S., Miletic, I. D., Djordjevic, P. B. & Dimitrijevic-Sreckovic, V. S. (2013). Food chemistry, 141(3), 1624-1629. Link to Article Read Abstract The typical Serbian diet is characterised by high intake of cereal products and also legumes are often used. The content of total fibre as well as certain fibre fractions was determined in cereals, cereal products, and cooked legumes. The content of total fibre in cooked cereals and cereal products ranged from 2.5 to 20.8 g/100 g, and in cooked legumes from 14.0 to 24.5 g/100 g (on dry matter basis). Distribution of analysed fibre fractions and their quantities differed significantly depending on food groups. Fructans and arabinoxylans were the most significant fibre fractions in rye flakes, and β-glucan in oat flakes, cellulose and resistant starch were present in significant amounts in peas and kidney beans. When the size of regular food portions was taken into consideration, the best sources of total dietary fibre were peas and kidney beans (more than 11 g/serving). The same foods were the best sources of cellulose (4.98 and 3.56 g/serving) and resistant starch (3.90 and 2.83 g/serving). High intake of arabinoxylans and fructans could be accomplished with cooked wheat (3.20 g and 1.60 g/serving, respectively). Oat (1.39 g/serving) and barley flakes (1.30 g/serving) can be recommended as the best sources of β-glucan.

Key residues in subsite F play a critical role in the activity of Pseudomonas fluorescens subspecies cellulosa xylanase A against xylooligosaccharides but not against highly polymeric substrates such as xylan.

Charnock, S. J., Lakey, J. H., Virden, R., Hughes, N., Sinnott, M. L., Hazlewood, G. P., Pickersgill, R. & Gilbert, H. J. (1997). The Journal of Biological Chemistry, 272(5), 2942-2951. Link to Article Read Abstract In a previous study crystals of Pseudomonas fluorescens subspecies cellulosa xylanase A (XYLA) containing xylopentaose revealed that the terminal nonreducing end glycosidic bond of the oligosaccharide was adjacent to the catalytic residues of the enzyme, suggesting that the xylanase may have an exo-mode of action. However, a cluster of conserved residues in the substrate binding cleft indicated the presence of an additional subsite, designated subsite F. Analysis of the biochemical properties of XYLA revealed that the enzyme was a typical endo-β1,4-xylanase, providing support for the existence of subsite F. The three-dimensional structure of four family 10 xylanases, including XYLA, revealed several highly conserved residues that are on the surface of the active site cleft. To investigate the role of some of these residues, appropriate mutations of XYLA were constructed, and the biochemical properties of the mutated enzymes were evaluated. N182A hydrolyzed xylotetraose to approximately equal molar quantities of xylotriose, xylobiose, and xylose, while native XYLA cleaved the substrate to primarily xylobiose. These data suggest that N182 is located at the C site of the enzyme. N126A and K47A were less active against xylan and aryl-β-glycosides than native XYLA. The potential roles of Asn-126 and Lys-47 in the function of the catalytic residues are discussed. E43A and N44A, which are located in the F subsite of XYLA, retained full activity against xylan but were significantly less active than the native enzyme against oligosaccharides smaller than xyloseptaose. These data suggest that the primary role of the F subsite of XYLA is to prevent small oligosaccharides from forming nonproductive enzyme-substrate complexes.

Simultaneous uptake of lignocellulose‐based monosaccharides by Escherichia coli.

Jarmander, J., Hallström, B. M. & Larsson, G. (2014). Biotechnology and Bioengineering, 111(6), 1108-1115. Link to Article Read Abstract Lignocellulosic waste is a naturally abundant biomass and is therefore an attractive material to use in second generation biorefineries. Microbial growth on the monosaccharides present in hydrolyzed lignocellulose is however associated with several obstacles whereof one is the lack of simultaneous uptake of the sugars. We have studied the aerobic growth of Escherichia coli on D-glucose, D-xylose, and L-arabinose and for simultaneous uptake to occur, both the carbon catabolite repression mechanism (CCR) and the AraC repression of xylose uptake and metabolism had to be removed. The strain AF1000 is a MC4100 derivative that is only able to assimilate arabinose after a considerable lag phase, which is unsuitable for commercial production. This strain was successfully adapted to growth on L-arabinose and this led to simultaneous uptake of arabinose and xylose in a diauxic growth mode following glucose consumption. In this strain, a deletion in the phosphoenolpyruvate:phosphotransferase system (PTS) for glucose uptake, the ptsG mutation, was introduced. The resulting strain, PPA652ara simultaneously consumed all three monosaccharides at a maximum specific growth rate of 0.59 h-1, 55% higher than for the ptsG mutant alone. Also, no residual sugar was present in the cultivation medium. The potential of PPA652ara is further acknowledged by the performance of AF1000 during fed-batch processing on a mixture of D-glucose, D-xylose, and L-arabinose. The conclusion is that without the removal of both layers of carbon uptake control, this process results in accumulation of pentoses and leads to a reduction of the specific growth rate by 30%.

Penicillium purpurogenum produces two GH family 43 enzymes with β-xylosidase activity, one monofunctional and the other bifunctional: Biochemical and structural analyses explain the difference.

Ravanal, M. C., Alegría-Arcos, M., Gonzalez-Nilo, F. D. & Eyzaguirre, J. (2013). Archives of Biochemistry and Biophysics, 540(1-2), 117-124. Link to Article Read Abstract β-Xylosidases participate in xylan biodegradation, liberating xylose from the non-reducing end of xylooligosaccharides. The fungus Penicillium purpurogenum secretes two enzymes with β-D-xylosidase activity belonging to family 43 of the glycosyl hydrolases. One of these enzymes, arabinofuranosidase 3 (ABF3), is a bifunctional α-L-arabinofuranosidase/xylobiohydrolase active on p-nitrophenyl-α-L-arabinofuranoside (pNPAra) and p-nitrophenyl-β-D-xylopyranoside (pNPXyl) with a KM of 0.65 and 12 mM, respectively. The other, β-D-xylosidase 1 (XYL1), is only active on pNPXyl with a KM of 0.55 mM. The xyl1 gene was expressed in Pichia pastoris, purified and characterized. The properties of both enzymes were compared in order to explain their difference in substrate specificity. Structural models for each protein were built using homology modeling tools. Molecular docking simulations were used to analyze the interactions defining the affinity of the proteins to both ligands. The structural analysis shows that active complexes (ABF3–pNPXyl, ABF3–pNPAra and XYL1–pNPXyl) possess specific interactions between substrates and catalytic residues, which are absent in the inactive complex (XYL1–pNPAra), while other interactions with non-catalytic residues are found in all complexes. pNPAra is a competitive inhibitor for XYL1 (Ki = 2.5 mM), confirming that pNPAra does bind to the active site but not to the catalytic residues.

Development and testing of a novel lab-scale direct steam-injection apparatus to hydrolyse model and saline crop slurries.

Guglielmo, S., Dalessandro, A., Maurizio, P., Silvia, C., Maurizio, R., Riccardo, V. & Moresi, M. (2012). Journal of Biotechnology, 157(4), 590-597. Link to Article Read Abstract In this work, a novel laboratory-scale direct steam-injection apparatus (DSIA) was developed to overcome the main drawback of the conventional batch-driven lab rigs, namely the long time needed to heat fiber slurry from room to reaction temperatures greater than 150°C. The novel apparatus mainly consisted of three units: (i) a mechanically-stirred bioreactor where saturated steam at 5–30 bar can be injected; (ii) an automatic on–off valve to flash suddenly the reaction medium after a prefixed reaction time; (iii) a cyclone separator to recover the reacted slurry. This system was tested using 0.75 dm3 of an aqueous solution of H2SO4 (0.5%, v/v) enriched with 50 kg m-3 of either commercial particles of Avicel® and Larch xylan or 0.5 mm sieved particles of Tamarix jordanis. Each slurry was heated to about 200°C by injecting steam at 28 bar for 90 s. The process efficiency was assessed by comparing the dissolution degree of suspended solid (YS), as well as xylose (YX), glucose (YG), and furfural (YF) yields, with those obtained in a conventional steam autoclave at 130°C for 30 or 60 min. Treatment of T. jordanis particles in DSIA resulted in YS and YG values quite similar to those obtained in the steam autoclave at 130°C for 60 min, but in a less efficient hemicellulose solubilization. A limited occurrence of pentose degradation products was observed in both equipments, suggesting that hydrolysis predominated over degradation reactions. The susceptibility of the residual solid fractions from DSIA treatment to a conventional 120 h long cellulolytic treatment using an enzyme loading of 5.4 FPU g-1 was markedly higher than that of samples hydrolysed in the steam autoclave, their corresponding glucose yields being equal to 0.94 and 0.22 g per gram of initial cellulose, respectively. Thus, T. jordanis resulted to be a valuable source of sugars for bioethanol production as proved by preliminary tests in the novel lab rig developed here.

Synergistic effect of Aspergillus niger and Trichoderma reesei enzyme sets on the saccharification of wheat straw and sugarcane bagasse.

van den Brink, J., Maitan-Alfenas, G. P., Zou, G., Wang, C., Zhou, Z., Guimarães, V. M. & de Vries, R. P. (2014). Biotechnology Journal, 9(10), 1329-1338. Link to article Read Abstract Plant-degrading enzymes can be produced by fungi on abundantly available low-cost plant biomass. However, enzymes sets after growth on complex substrates need to be better understood, especially with emphasis on differences between fungal species and the influence of inhibitory compounds in plant substrates, such as monosaccharides. In this study, Aspergillus niger and Trichoderma reesei were evaluated for the production of enzyme sets after growth on two \"second generation” substrates: wheat straw (WS) and sugarcane bagasse (SCB). A. niger and T. reesei produced different sets of (hemi-)cellulolytic enzymes after growth on WS and SCB. This was reflected in an overall strong synergistic effect in releasing sugars during saccharification using A. niger and T. reesei enzyme sets. T. reesei produced less hydrolytic enzymes after growth on non-washed SCB. The sensitivity to non-washed plant substrates was not reduced by using CreA/Cre1 mutants of T. reesei and A. niger with a defective carbon catabolite repression. The importance of removing monosaccharides for producing enzymes was further underlined by the decrease in hydrolytic activities with increased glucose concentrations in WS media. This study showed the importance of removing monosaccharides from the enzyme production media and combining T. reesei and A. niger enzyme sets to improve plant biomass saccharification.

Co-fermentation of acetate and sugars facilitating microbial lipid production on acetate-rich biomass hydrolysates.

Gong, Z., Zhou, W., Shen, H., Yang, Z., Wang, G., Zuo, Z., Hou. Y. & Zhao, Z. K. (2016). Bioresource technology, 207, 102-108. Link to Article Read Abstract The process of lignocellulosic biomass routinely produces a stream that contains sugars plus various amounts of acetic acid. As acetate is known to inhibit the culture of microorganisms including oleaginous yeasts, little attention has been paid to explore lipid production on mixtures of acetate and sugars. Here we demonstrated that the yeast Cryptococcus curvatus can effectively co-ferment acetate and sugars for lipid production. When mixtures of acetate and glucose were applied, C. curvatus consumed both substrates simultaneously. Similar phenomena were also observed for acetate and xylose mixtures, as well as acetate-rich corn stover hydrolysates. More interestingly, the replacement of sugar with equal amount of acetate as carbon source afforded higher lipid titre and lipid content. The lipid products had fatty acid compositional profiles similar to those of cocoa butter, suggesting their potential for high value-added fats and biodiesel production. This co-fermentation strategy should facilitate lipid production technology from lignocelluloses.

Effects of an acid/alkaline treatment on the release of antioxidants and cellulose from different agro-food wastes.

Vadivel, V., Moncalvo, A., Dordoni, R. & Spigno, G. (2017). Waste Management, 64, 305-314. Link to Article Read Abstract The present investigation was aimed to evaluate the release of both antioxidants and cellulosic fibre from different agro-food wastes. Cost-effective and easily available agro-food residues (brewers’ spent grains, hazelnut shells, orange peels and wheat straw) were selected and submitted to a double-step acid/alkaline fractionation process. The obtained acid and alkaline liquors were analysed for total phenols content and antioxidant capacity. The final fibre residue was analysed for the cellulose, lignin and hemicellulose content. The total phenols content and antioxidant capacity of the acid liquors were higher than the alkaline hydrolysates. Orange peels and wheat straw gave, respectively, the highest (19.70 ± 0.68 mg/gdm) and the lowest (4.70 ± 0.29 mg/gdm) total phenols release. Correlation between antioxidant capacity of the liquors and their origin depended on the analytical assay used to evaluate it. All the acid liquors were also rich in sugar degradation products (mainly furfural). HPLC analysis revealed that the most abundant phenolic compound in the acid liquors was vanillin for brewers’ spent grains, hazelnut shells and wheat straw, and p-hydroxybenzoic acid for orange peels. Wheat straw served as the best raw material for cellulose isolation, providing a final residue with a high cellulose content (84%) which corresponded to 45% of the original cellulose. The applied process removed more than 90% of the hemicellulose fraction in all the samples, while delignification degree ranged from 67% (in hazelnut shells), to 93% (in brewers’ spent grains). It was not possible to select a unique raw material for the release of highest levels of both total phenols and cellulose.

UV-method for the determination of D-Xylose in fermentation broths and hydrolysates of plant material and polysaccharidesPrinciple: (xylose mutarotase)(1) α-D-Xylose ↔ β-D-xylose (β-xylose dehydrogenase)(2) β-D-Xylose + NAD+ → D-xylonic acid + NADH + H+

Kit size: * 100 assays (manual) / 1000 (microplate) / 1300 (auto-analyser)

*The number of manual tests per kit can be doubled if all volumes are halved.This can be readily accommodated using the MegaQuantTMWaveSpectrophotometer (D-MQWAVE).

Method: Spectrophotometric at 340 nmReaction time: ~ 6 minDetection limit: 0.7 mg/LApplication examples: Analysis of D-xylose in fermentation broths and hydrolysates of plantmaterial and polysaccharidesMethod recognition:Novel method

    Advantages

    • Very cost effective
    • All reagents stable for > 2 years after preparation
    • Only enzymatic kit available
    • Rapid reaction (~ 6 min)
    • Mega-Calc™ software tool is available from our website for hassle-free raw data processing
    • Standard included
    • Suitable for manual, microplate and auto-analyser formats