OverviewTechnicalDataPropertiesApplicationsPricingLiteratureCaesiumLeadperovskiteQuantumdotsofchloride/bromide(450nm,blue),bromide(515nm,green)andiodide(685nm,red)arenowavailable.Perovskitequantumdotsaresemiconductingnanocrystals.Comparedtometalchalcogenidequantumdots,perovskitequantumdotsaremoretoleranttodefectsandhaveexcellentphotoluminescencequantumyieldsandhighcolourpurity.ThesepropertiesarehighlydesirableforelectronicandoptoelectronicapplicationsandhenceperovskitequantumdotshavehugepotentialforrealworldapplicationsincludingLEDdisplaysandquantumdotsolarcells.ossilasupplieshighquality,lowpriceperovskitequantumdotsfrom£200.00.FullspectrumrangeofperovskitequantumdotscomingsoonWhatisaquantumdot?Aquantumdot(QD),orsemiconductingnanocrystal(NC),isasinglecrystalofasemiconductingmaterialmeasuringonlyafewnanometresindiameter.Whenexcited,thesmallsizeofthecrystalactsa‘quantumbox’andconfineselectronsandholesinanvolumesmallerthanthecorrespondingexcitonBohrrADIus.Thesmallerthedot,thegreatertheconfinementenergyandthehighertheenergyofphotonsthatareabsorbedoremitted.Themostwell-studiedquantumdotsaremetalchalcogenidequantumdotsbasedonsemiconductorssuchascadmiumselenide,indiumphosphideorLead(II)sulfide.ThebandgapofsuchquantumdotscanbetunedthroughouttheentirevisIBLespectrumsimplybychangingtheirsizeduringchemicalsynthesis.Forthehighestphotoluminescencequantumyields(PLQYs),acore/shellstructureisusuallyrequired.Inthisarrangement,asecondsemiconductorisusedtoencapsulatethenanocrystal(e.g.CdSe/CdS,InP/ZnS).Thismaterialpassivatessurfacedefectsoftheemissivecorewhichwouldotherwiseactasnon-radiativerecombinationsitesforexcitons.DuetotheirhighPLQY,relativeeaseoffabricationandwideemission-colourtunABIlity,quantumdotshavingthistypeofstructureareespeciallysuitableforapplicationindisplayandimagingtechnologies-andarealreadyappearingincommercialproductssuchastelevisions.Thephotoluminescenceemissionwavelengthcanbetunedbyvaryingtheratioofhalidespresentwithinthequantumdot.Bycarefulselectiontheemissioncanbevariedfrom400nmto700nm.Whatisaperovskitequantumdot?Anewclassofquantumdotisemergingbasedonperovskites.ThesehavealreadybeenshowntohavepropertiesrivallingorexceedingthoseofmetalchalcogenideQDs.Duetotheiroutstandingphotovoltaicperformance,perovskitesarereceivingsignificantattentionfromtheresearchcommunity.Recently,hasbeenshownthatreducingthedimensionsofaperovskitecrystaldowntoafewnanometresresultsinthecreationofquantumdotswithveryhighphotoluminescencequantumyieldsandexcellentcolourpurity(i.e.narrowemissionlinewidthsof~10nmforblueemittersand40nmforredemitters[1]).Thesequantumdotsarehighlytoleranttodefects,astheyrequirenopassivationofthesurfacetoretaintheirhighPLQY.Althoughdefectandtrapsitesarepresent,theirenergiesarepositionedoutsidethebandgapandareeitherlocatedwithintheconductionorvalencebands[2].SuchperovskitenanocrystalsaresimpletosynthesiseinacolloidalsUSPensionandareeasilyintegratedintooptoelectronicdevicesusingreadilyavailableprocessingtechniques,makingthemastrongcontenderforfuturetechnologies.Size,Properties,andStructure99%puritywithPhotoluminescenceQuantumYieldof60–70%EmissionPeakat515nmandEmissionLinewidth(FWHM)of21nmCubiccrystalstructurewithtypicalsize4-15nmFormoreinformation,pleaseseethepropertiestab.PerovskiteQuantumDotApplicationsPerovskitequantumdotsarecurrentlylesswellresearchedthanothertypesofquantumdot.However,theyhaveshowngreat potentialforarangeofdifferentapplicationsinoptoelectronicsandnanotechnology.Forexample, perovskitequantumdotshavebeenusedtocreatesolarcellshavingpowerconversionefficienciesthatexceedthatofcomparabledevicesbasedonmoreconventionalsemiconductornanocrystalmaterials.Potentialapplicationsforperovskitequantumdotsinclude:LightEmittingDiodesSolarCellsSinglePhotonSourcesX-RayDetectorsLasersPhotodetectorsQuantumComputingCellimagingCancermappingFormoreinformation,pleaseseetheapplicationstab.TechnicalDataCsPbBr3PerovskiteQuantumDotsCASnumber15243-48-8ChemicalformulaCsPbBr3Molecularweight579.82 g/molFullnameCaesiumleadtribromidequantumdotsSynonymsCaesiumleadbromidequantumdotsClassification/FamilyPerovskitequantumdots, Perovskitenanocrystalsolutions, Cadmium-freequantumdots,Quantumdotsolutions,Greenemitter,QuantumdotLEDs(QDLEDs),PerovskiteLEDs(PeLEDs),Perovskitesolarcells(PvSCs)Purity99%AppearanceYellowLiquidEmissionPeak515nmEmissionLinewidth(FWHM)21nmPhotoluminescenceQuantumYield60-70%CsPbCl1.5Br1.5 PerovskiteQuantumDotsCASnumberNotavailableChemicalformulaCsPbCl1.5Br1.5Molecularweight513.14 g/molFullnameCaesiumleadchloridebromidequantumdotsSynonymsCaesiumlead chloridebromidequantumdotsClassification/FamilyPerovskitequantumdots, Perovskitenanocrystalsolutions, Cadmium-freequantumdots,Quantumdotsolutions,Greenemitter,QuantumdotLEDs(QDLEDs),PerovskiteLEDs(PeLEDs),Perovskitesolarcells(PvSCs)Purity99%AppearanceClear LiquidEmissionPeak450nmEmissionLinewidth(FWHM)20nmPhotoluminescenceQuantumYield30-40%CsPbI3 PerovskiteQuantumDotsCASnumber18041-25-3ChemicalformulaCsPbI3Molecularweight720.82 g/molFullnameCaesiumleadtriiodide quantumdotsSynonymsCaesiumlead iodide quantumdotsClassification/FamilyPerovskitequantumdots, Perovskitenanocrystalsolutions, Cadmium-freequantumdots,Quantumdotsolutions,Greenemitter,QuantumdotLEDs(QDLEDs),PerovskiteLEDs(PeLEDs),Perovskitesolarcells(PvSCs)Purity99%AppearanceDarkRed LiquidEmissionPeak688nmEmissionLinewidth(FWHM)39nmPhotoluminescenceQuantumYield60-70%PerovskiteQuantumDotSpectralDataCsPbBr3PerovskiteQuantumDotsAbsorptionSpectraCsPbBr3PerovskiteQuantumDotsPhotoluminescenceSpectra CsPbCl1.5Br1.5 PerovskiteQuantumDotsPhotoluminescenceSpectraCsPbI3 PerovskiteQuantumDotsPhotoluminescenceSpectraMSDS DocumentsCsPbBr3PerovskiteQuantumDotsinTolueneCsPbBr3PerovskiteQuantumDotsinOctanePropertiesofPerovskiteQuantumDotsPerovskiteQuantumDot StructureHalideperovskitenanocrystalshaveacubiccrystalstructure withthechemicalformula A+Pb2+X-3.Theycanbeclassedasanorganic-inorganichybrid,where A isanorganiccationsuchasmethylammonium(MA)orformamidinium(FA),orfullyinorganic(A=Cs),andwhere X isahalogen(Cl,BrorI).Duetothelackofvolatileorganics,fully-inorganic nanocrystals tendtohavebetterstabilityandhigherPLQY(>90%)thanhybridorganic-inorganicmaterials[3].Mixedhalideperovskitescanalsobeproducedwhere X isamixtureofCl/BrorBr/I.Forvisibleoptoelectronicapplications,thenanocrystalsaregenerallysynthesisedtohaveasizeof4-15nm(dependentonthehalogenatomandtherequiredopticalproperties).Theemissionwavelengthcanbetunedthroughtheentirevisiblespectrum(400-700nm [4])bychangingeitherthenanocrystalsizeorhalideratio(formixedhalidesystems).Figure1:Leadhalideperovskitequantumdotshaveacubicstructureandareoftensynthesisedwithorganicligands.PerovskiteQuantumDotSynthesisThefirsthybridorganic-inorganicperovskitequantumdotcolloidalsynthesisofMAPbBr3 wasreportedbySchmidtetal.usingahotinjectionmethod(similartothatusedtosynthesisemetalchalcogenideQDs [4]).Amixtureofmethylaminebromideandleadbromidewasinjectedintoanoctadecenesolutioncontainingoleicacidandalongchainalkylammoniumbromide.ThePLQYoftheresultingQDswas~20%,andwasstableforseveralmonthsduetothestabilisingandcappingeffectsoftheammoniumbromideandoleicacid.Byoptimisationofthereactantmolarratios,thePLQYwasincreasedtoover80% [5],andlaterto~100%bychangingthecappingligand [6]. Figure2:ThesynthesisofperovskitequantumdotsinvolvesinjectingCs-oleateintoaleadprecursor. Hotinjectionwasagainusedforthecolloidalsynthesisofinorganicmetal-halideperovskitequantumdots,firstreportedbyProtesescuetal [1].Thatrecipedevelopedwasasfollows:ThecaesiumprecursorCs-oleateisfirstpreparedbymixingcaesiumcarbonate(Cs2CO3)andoleicacid(OA)inoctadecene(ODE),andheatingundernitrogenuntiltheCs2CO3 hasreactedwiththeOA.Thissolutionmustbekeptabove100°CtopreventprecipitationoftheCs-oleate.Aleadhalideprecursorispreparedbymixingaleadhalide(PbCl2,PbI2,PbBr2 oramixtureofthese)inODEat120°Cundernitrogen,alongwithOAandoleylamine(OLA)thatactasstabilisingagents.Oncetheleadhalidehasdissolved,thetemperatureisincreasedtobetween140-200°C(dependingontherequirednanocrystalsize).Thecaesiumprecursoristheninjected.After5seconds,themixtureisrapidlycooledinanicebath,withthequantumdotsbeingisolatedthroughcentrifuging.TheresultingnanocrystalshavesurfaceligandscomprisedofOAandOLA [3].SuchnanocrystalswerefoundtohavePLQYsupto~90%,withthesmallestcrystals(4nmdiameter)havinganemissionlinewidth(fullwidthhalfmaximum)of12nmatanemissionwavelengthof410nm,withthelargestquantumdots(15nmdiameter)havingalinewidthof42nmat700nm. Duringtheproductionprocessthereactionmixtureisquenchedbycoolinginanice-waterbath.Mixed-halidePerovskiteQuantumDotsAnadvantagethatperovskitequantumdotshaveovertheirmetalchalcogenidecounterpartsisthesimplicitybywhichtheiremissionpropertiescanbemodified.Inadditiontotuningtheemissionwavelengthduringsynthesisthroughreactiontemperature(andultimately,nanocrystalsize),itcanalsobechangedpost-synthesisthroughananion-exchangereaction [7,8].Bymixingadonorhalidesourcesuchasoctadecylammonium(ODA-Y),chloro-oleyalmine-oleylammoniumchloride(OLAM-Y)ortetrabutylammonium(TBA-Y)halide(whereYisCl,BrorI)withasolutionofCsPbX3 nanocrystals,thechemicalcompositionofthenanocrystalscanbetunedcontinuouslyovertherangeCsPb(X1-Z:YZ),where0≤Z≤1. Apossiblemechanismforanionexchangeinperovskitequantumdots. Anionexchangeisfollowedbylatticereconfiguration,givingamixedhalidestructure.Thisresultsinasingleemissionpeakatanenergysomewhereinbetweenthoseoftheconstituentnanocrystals,therebyretainingthenarrowlinewidthneededforcolorpurity.HoweverithasbeenfoundthatdirectconversionbetweenCsPbI3 andCsPbCl3 isnotpossiblebecauseofthelargemismatchinthesizeofthehalideions.Ithasalsobeendemonstratedthatthisanionexchangeprocesscanbeeasilyaccomplishedbysimplymixingdifferentstocksolutionsofthenanocrystalconstituentsatdifferentvolumeratios(e.g.CsPbBr3 andCsPbI3 toobtainCsPb(Br1-Z:IZ)3 [7,9]).BothmethodsallowthenanocrystalemissiontobetunedovertheentirevisiblerangewhileretainingahighPLQYandcolorpurity.Theanionexchangeprocesscanhoweverbesuppressedbyaddingpolyhedraloligomericsilsesquioxane(POSS)tothesolution.Thiscreatesaprotectivecagearoundthenanocrystals,andallowsmixingofdifferenthalidecompositionswhileretainingthephotoluminescent propertiesoftheconstituentnanocrystals.Italsohastheaddedeffectofprotectingthenanocrystalsfromwater [10]. Figure3:ACsPbBrperovskitequantumdotinkundernormalIllumination(left)andultravioletillumination(right).ApplicationsofPerovskiteQuantumDotsPerovskitequantumdotshavehugepotentialforarangeofapplicationsinelectronics,optoelectronicsandnanotechnology.Currently,thefieldisnotwellresearched,butinitialresultsareextremelypromising.Detailsonaselectionoftheapplicationsthathavebeeninvestigatedaregivenbelow.QuantumDotSolarCellsCurrently,reportsofperovskitequantumdotsolarcellsarestilllimited,especiallywhencomparedtobulkand2-dimensionalperovskites.Thisislikelyduetothelimitedtimethatsuchmaterialshavebeenavailable.However,recentresults suggestthatperovskitequantumdotscouldplayarolefuturephotovoltaicdevices.Thefirstuseofperovskitequantumdotsinsolarcellswasin2011byImetal.,whereMaPbI3 nanocrystalsactedasalight-sensitiserinastructureresemblingadye-sensitisedsolarcell [16],withapowerconversionefficiencyof6.5%reported.Thisresultpredatedthesynthesisofcolloidalperovskitequantumdots,andthenanocrystalswereinsteadformedthroughsurfaceinteractionswhenamixtureofmethylammoniumiodideandleadiodidewasspincastontoaTiO2 surface.Atroomtemperature,bulkCsPbI3 formsanorthorhombiccrystallatticewithalargebandgapof~2.8eV.Thecubicphaseisfarmoresuitableforphotovoltaicapplicationsasaresultofanarrowerbandgap(1.73eV).However,thisphaseonlyformsinbulkCsPbI3 attemperaturesabove300°C.Duetotheelevatedtemperatureandtheeffectofreducedsurfacearea,allCsPbX3 nanocrystalscrystalliseintothecubicphaseduringsynthesis.IncontrastCsPbCl3 andCsPbBr3 quantumdotsarephase-stableinthecubicpolymorphoverlongperiods,howeverCsPbI3 willconvertbacktoanorthorhombicconfigurationoverafewdaysinambientconditions.Swarnkaretal.showedthattreatingspincastCsPbI3 quantumdotfilmswithmethylacetatestabilisesthecubicstructure [17].Thiswasachievedby changingthesurfaceenergy viatheremovalofunreactedprecursors-withoutcausingtheaggregationofthedots.Theresultingfilmwasstableformonthsunderambientconditions,andhadexcellentoptoelectronicproperties.Indeed,whenfabricatedintosolarcells,suchfilmsachievedaPCEofover10%andhadalargeopen-circuitvoltageof1.23V.FurThermore,LEDsincorporatingstabilisedCsPbI3 nanocrystalsastheactivelayerdisplayedalowturn-onvoltageof<2V.Itwaslaterdemonstratedthatcoatingthenanocrystalsin A+X- (where A isformamidinium,methylammoniumorCs,and X isIorBr)furtherimprovescharge-carriermobilityofthenanocrystalfilms.ThisallowedsolarcellshavingaPCEof13.4%tobefabricated–thehighestefficiencyphotovoltaicsbasedonquantumdotsofanykind [18].Thisresultispromisingforthedevelopmentofperovskitetandemsolarcells;hereabulkperovskitefilmperformstheroleofthelowbandgapabsorber,withtheperovskitequantumdotlayeractingasacomplementarywidebandgapabsorber [19].Light-EmittingDiodes(LEDs)Metalchalcogenidequantumdotsalreadyplayaroleinconsumerdisplayproducts-sotheincreasedPLQY,easeofsynthesis,excellentcolourpurity,andwidecolourtunabilityofperovskitequantumdotssuggestthattheyshouldbewell-suitedtosuchapplications.However,chargeinjectionandtransportinnanocrystalfilmsmustbeoptimisedinordertoachievehigh-efficiencydevices.FirstdevicesbySongetal.usedanITO/PEDOT:PSS/PVK/CsPbX3/TPBi/LiF/Alstructuretodemonstrateblue,green,andorangeLEDs [11].Whiletheemissionlinewidthswerenarrow,thebrightnessoftheLEDswasmodest(<1000cdm-2),andtheexternalquantumefficiencies(EQE)werelimitedto~0.1%.Lietal.showedtheimportanceofnanocrystalsurfacechemistry;heretheEQEofCsPbBr3 nanocrystalLEDswasincreasedby50x(0.12%to6.27%)throughtheoptimisationofdevicecharge-transportlayersandsurfaceliganddensitycontrol(achievedthroughtheuseofawashingprocedureusinghexaneandethylacetate [3]).Whileligandsareneededtopassivatethequantumdotsurfaceandpreventaggregation(leadingtohighPLQYandgreaterstability),anexcessivedensityofsurfaceligandscaninhibitelectricalinjectionandtransport.Bytuningtheliganddensity,abrightnessof>15,000cdm-2 wasobtainedthatwasaccompaniedbyhighcolourpurity(20nmemissionlinewidthusing~8nmnanocrystals).Oneproposalthatbypassestheelectricalpropertiesofnanocrystalfilmsistousethemasdown-convertersforinorganicblueorUVLEDs.Pathaketal.dissolvedhybridorganic-inorganicperovskitequantumdotsofvariousmixedhalidecompositions(emittinggreenorredluminescence)intoapolystyrenepolymersolutionwhichwasthenspincastintoathinfilm[12].Thepolystyrenepolymeractedasaninsulatingmatrixthatpreventedanionexchange,therebypreservingtheindividualemissionpeaksoftheconstituentnanocrystalsandallowingthegenerationofwhitelightwhenilluminatedwithacommercialblueLED.LasersAmplifiedspontaneousemission(ASE)hasbeenobservedindropcastfilmsofCsPbBr3,andmixedCsPb(Br/I)3 andCsPb(Cl/Br)3 nanocrystals.Pumpthresholdscanbeaslowas5µJcm-2 [13];avaluethatcomparesveryfavourablywithothercolloidalQDsystems(e.g.anorderofmagnitudelowerthanspectrallysimilarCdSeQDs).TheASEemissionintensityis extremelystableinair,droppingbyonly10%afterseveralhoursofirradiationand~107 shotsinambientconditions.ThisperformancealsocomparesextremelywelltochalcogenideQDs [14]. Thestimulatedemissionhasbeenidentifiedasresultingfromtherecombinationofbiexcitons(whicharemorestableatroomtemperaturethanexcitons),withred-shiftedemissionleadingtoreducedself-absorption(andhencelowlasingthresholds).TheASEwavelength canalsobetunedthroughouttheentirevisiblespectrumviamixingthehalidecomposition.Lasingwasobservedinawhisperinggallerymodeconfiguration.ItwaslatershownthatstimulatedemissioncouldbeobservedinCsPbBr3 nanocrystalfilmsfollowingtwo-photonabsorption [15].Here,itwasfoundthatthetwo-photonabsorptioncross-sectionwas2ordersofmagnitudelargerthanthatofsimilarmetalchalcogenidequantumdots,leadingtoastimulatedemissionthresholdofgreen-emittingCsPbBr3 nanocrystalsof2.5mJcm-2.Thisisfarlowerthancore-shellmetalchalcogenidequantumdots.Thisnon-linearstimulatedemissioncouldalsobetunedacrossthevisiblewavelengthsbyvaryingthemixedhalidecomposition.GreenstimulatedemissionfromCsPbBr3 quantumdots(followingthree-photonabsorption)wasalsoobserved–afirstforanytypeofquantumdot.Forthisreason,perovskitequantumdotspresentanexcitingProspectforthedevelopmentofnext-generationlasers.SinglePhotonSourcesSinglephotonsourcesarerequiredfornewlight-basedquantuminformationsystems.Here,currenteffortsmainlyfocusontheuseofepitaxially-grownquantumdots,diamondcolourcentersandcolloidalnanocrystals.Ofthese,colloidalNCsarethemostpromisingforroom-temperaturevisibleoperation [20].DiluteCsPbX3 (X=Br,IorBr/I)NCsolutionshavebeenspincasttocreatespatially-separatedindividualQDs [20,21].Imagingthe photoluminescence fromindividualNCsshowedtheblinkingbehaviour thatischaracteristicofsingleemitters.Photoncoincidencecountingrevealedlowg(2) valuesof~6%,demonstratingtherealisationofanefficient,anti-bunchedsinglephotonsourceatroomtemperature–allofwhicharedesirablecharacteristicsforemergentquantumtechnologies.IncomparisonwithmetalchalcogenideQDs,metalhalideperovskiteQDsdisplayshorterfluorescencelifetimesandhigherabsorptioncoefficientsandarethereforefasterandmoreefficientsourcesofsinglephotons.PhotodetectorsThehighabsorptioncoefficientofperovskiteQDsoverawidespectralrangemaymakethemsuitablecandidatesforuseinlight-detectiondevices.Panetal.havereportedthefabricationofaphototransistorbasedonFAPbBr3 quantumdotsandgraphene [22].TheQDswhichactasthelightabsorber,aredepositedontoamonolayerofgraphenethattransportsphotoexcitedchargestothesource/drain.Suchphototransistorshaveabroadresponsespanningthevisiblespectrum,althoughtheyhavereducedresponsetophotonshavingenergiesbelowthesemiconductorbandgap(540nm).Here,aphotoresponsivityof1.15×105 AW-1 wasobservedat520nm;avaluethatisamongstthehighestofanygraphene-basedphotodetectors.PricingTablePerovskiteSolventConcentrationVolumeProductCodePriceCsPbBr3Toluene10mg.ml-15mlM2124A1£200.00CsPbBr3Toluene10mg.ml-110mlM2124A1£350.00CsPbBr3Toluene10mg.ml-125mlM2124A1£700.00CsPbBr3Octane10mg.ml-15mlM2124B1£200.00CsPbBr3Octane10mg.ml-110mlM2124B1£350.00CsPbBr3Octane10mg.ml-125mlM2124B1£700.00Shippingisfreeforqualifyingordersplacedviaoursecureonlinecheckout.LiteratureReferencesNanocrystalsofCesiumLeadHalidePerovskites(CsPbX3,X=Cl,Br,andI):NovelOptoelectronicMaterialsShowingBrightEmissionwithWideColorGamut,L.Protesescuetal.,NanoLett., 15 (6),3692–3696(2015)LeadHalidePerovskiteNanocrystalsintheResearchSpotlight:StabilityandDefectTolerance,Huangetal.,ACSEnergyLett.,2 (9),2071–2083(2017)50‐FoldEQEImprovementupto6.27%ofSolution‐ProcessedAll‐InorganicPerovskiteCsPbBr3 QLEDsviaSurfaceLigandDensityControl,Lietal.,Adv.Mater.,29(5),1603885(2017)NontemplateSynthesisofCH3NH3PbBr3 PerovskiteNanoparticles,L.Schmidtetal.,Am.Chem.Soc.,136(3),850–853(2014)MaximizingtheemissivepropertiesofCH3NH3PbBr3 perovskitenanoparticles,S.Gonzalex-Carreroetal.,J.Mater.Chem.A,3,9187-9193(2015)TheLuminescenceofCH3NH3PbBr3 PerovskiteNanoparticlesCreststheSummitandTheirPhotostabilityunderWetConditionsisEnhanced,Gonzalex-Carreroetal.,Small,12(38),5245-5250(2016)FastAnion-ExchangeinHighlyLuminescentNanocrystalsofCesiumLeadHalidePerovskites(CsPbX3,X=Cl,Br,I),N.Nedelcuetal.,NanoLett., 15 (8),5635–5640(2015)TuningtheOpticalPropertiesofCesiumLeadHalidePerovskiteNanocrystalsbyAnionExchangeReactions,Akkermanetal.,J.Am.Chem.Soc., 137 (32),10276–10281(2015)Room-TemperatureConstructionofMixed-HalidePerovskiteQuantumDotswithHighPhotoluminescenceQuantumYield,C.Bietal.,J.Phys.Chem.C,122(9),5151–5160(2018)WaterresistantCsPbX3 nanocrystalscoatedwithpolyhedraloligomericsilsesquioxaneandtheiruseassolidstateluminophoresinall-perovskitewhitelight-emittingdevices,H.Huangetal.,ChemSci.,7(9),5699–5703(2016)Quantumdotlight-emittingdiodesbasedoninorganicperovskitecesiumleadhalides(CsPbX3),J.Songetal.,Adv.Mater.,27,7162-7167(2015)PerovskiteCrystalsforTunableWhiteLightEmission,S.Pathaketal.,Chem.Mater.,27(23),8066–8075(2015)Low-thresholdamplifiedspontaneousemissionandlasingfromcolloidalnanocrystalsofcaesiumleadhalideperovskites,S.Yakuninetal.,Nat.Comm.,6,8056(2015)All‐InorganicColloidalPerovskiteQuantumDots:ANewClassofLasingMaterialswithFavorableCharacteristics,Y.Wangetal.,Adv.Mater.,27(44),7101-7108(2015)NonlinearAbsorptionandLow-ThresholdMultiphotonPumpedStimulatedEmissionfromAll-InorganicPerovskiteNanocrystals,Wangetal.,NanoLett., 16 (1),448–453(2016)6.5%efficientperovskitequantum-dot-sensitizedsolarcell,JH.Imetal.,Nanoscale,3,4088-4093(2011)Quantumdot–inducedphasestabilizationofα-CsPbI3perovskiteforhigh-efficiencyphotovoltaics,A.Swarnkaretal.,Science,354(6308),92-95(2016)EnhancedmobilityCsPbI3quantumdotarraysforrecord-efficiency,high-voltagephotovoltaiccells,E.Sanehiraetal.,ScienceAdvances27Oct2017:Vol.3,no.10,eaao4204PerovskiteQuantumDots:ANewAbsorberforPerovskite-PerovskiteTandemSolarCells:Preprint,J.Christiansetal.,NationalRenewableEnergyLaboratory.NREL/CP-5900-71593(2018)SuperiorOpticalPropertiesofPerovskiteNanocrystalsasSinglePhotonEmitters,F.Huetal.,ACSNano,9(12),12410–12416(2015)RoomTemperatureSingle-PhotonEmissionfromIndividualPerovskiteQuantumDots,YS.Parketal.,ACSNano, 9(10),10386–10393(2015)Photodetectors:High‐ResponsivityPhotodetectorsBasedonFormamidiniumLeadHalidePerovskiteQuantumDot–GrapheneHybrid,R.Panetal.,Particle,35(4),1700304(2018)Tothebestofourknowledgethetechnicalinformationprovidedhereisaccurate.However,Ossilaassumenoliabilityfortheaccuracyofthisinformation.Thevaluesprovidedherearetypicalatthetimeofmanufactureandmayvaryovertimeandfrombatchtobatch.
关于奥西拉
Ossila由有机电子研究科学家于2009年成立,旨在提供组件,设备和材料,以实现智能,高效的科学研究和发现。十多年来,我们很自豪能向全球80多个国家/地区的1000多个不同机构提供产品。
凭借在开发有机和薄膜LED,光伏和FET方面数十年的学术和工业经验,我们知道建立可靠,高效的器件制造和测试过程需要花费多长时间。因此,我们开发了相关的产品和服务包-使研究人员能够快速启动其有机电子产品开发计划。
奥西拉保证
全球免费送货
合格的订单可免费运送到世界任何地方
快速安全调度
通过安全跟踪的快递服务快速配送库存物品
质量保证
由所有设备的免费两年保修提供支持
清除前期定价
超过30种货币的清晰定价,无隐藏成本
大订单折扣
保存超过订单8% $ 10,300.00和10%以上的订单 $ 12,900.00
专家支持
我们内部的科学家和工程师随时准备为您提供帮助
全球信赖
优质的产品和服务。已经向很多人推荐。
卡尔加里大学Gregory Welch博士
优质产品价格合理的客户友好公司!
Shahriar Anwar,亚利桑那州立大学
奥西拉团队
David Lidzey教授-主席
作为谢菲尔德大学的物理学教授,David Lidzey教授领导该大学的电子和光子分子材料研究小组(EPMM)。David在其职业生涯中,曾在学术和技术环境中工作,主要研究领域包括混合有机-无机半导体材料和器件,有机光子器件和结构以及溶液处理的光伏器件。在整个学术生涯中,他撰写了220多篇同行评审论文。
James Kingsley博士-董事总经理
James是Ossila的联合创始人兼董事总经理。他拥有量子力学/纳米技术博士学位,并在有机电子领域拥有超过12年的经验,他在有机光伏制造产能方面的工作导致了Ossila的成立并建立了强大的指导精神:加快科学发现的步伐。James对开发创新的设备以及改善可溶液加工的光伏和混合有机-无机设备新材料的可及性特别感兴趣。
Alastair Buckley博士-技术总监
Alastair是谢菲尔德大学的物理学讲师,专门研究有机电子学和光子学。他还是EPMM研究小组的成员,致力于研究功能有机材料的内在优势并将其应用到一系列光电设备中。Alastair的经验并非仅在学术界获得。他曾领导MicroEmissive Displays的研发团队,因此在OLED显示器方面拥有丰富的技术经验。他还是Elsevier的“有机发光二极管”的编辑和撰稿人。
我们的研究科学家和产品开发人员在材料的合成和加工以及设备的制造和测试方面拥有丰富的经验。奥西拉(Ossila)的愿景是与学术界和工业界的研究人员分享这一经验,并提高他们的研究效率。通过提供无需费力设备制造过程的产品和服务,以及能够进行准确,快速测试的设备,我们就可以使科学家们腾出时间专注于他们最擅长的工作-科学。
客户服务团队负责奥西拉的客户旅程。从创建和提供报价到采购和库存管理,客户服务团队致力于提供一流的客户服务。客户服务团队成员的日常职责包括处理客户订单和价格查询,回答客户查询,安排包裹运输以及将订单更新通知客户。
请联系客户服务团队以解决所有疑问,包括有关Ossila产品的技术问题或有关制造和测量过程的建议。
位置及设施
奥西拉(Ossila)设在谢菲尔德阿特克利夫(Attercliffe)的Solpro商业园区。
我们在现场运营一个专门建造的合成化学和设备测试实验室,在这里制造我们所有的高纯度,批次特定的聚合物和其他配方。此外,设备制造集群内的专用薄膜和有机电子测试与分析工具套件也位于谢菲尔德EPSRC国家外延设施的1000级无尘室中。
我们所有的电子设备均在现场制造。