tech_banner
造血干细胞综述(Hematopoietic stem cells) - 自主发布...

造血干细胞综述(Hematopoietic stem cells)

Bert Wognum, PhD/高级研究员

背景

成熟血细胞生命有限,必须通过造血干细胞(hematopoietic stem cells, HSCs)增殖分化而补充。HSCs是主要存在于成年骨髓中的一小群细胞,具有自我\"复制”(即自我更新)和向所有系列造血祖细胞和成熟血细胞分化的能力。如图1,血细胞形成的过程就是HSCs增殖分化的过程。最近的研究也表明,HSCs也能形成非造血组织,如肌肉、肝脏、血管和皮肤,提示 HSCs在修复医学中的应用可能性。有关干细胞可塑性和横向分化内容,请参阅相关文献。1,2 为研究干细胞在造血和非造血组织再生中的应用,对HSCs的表型和功能特征的深入了解、进行HSCs有效分离并开展体外处理扩增等,已显得十分必要。本文将介绍检测和定量造血细胞的体内外方法,谈论纯化HSCs的措施,并探讨HSCs在修复医学中应用的可行性方案。

体内检测造血干细胞的方法

确定造血干细胞的金标准是,将细胞移植给清髓的受者后,能长期稳定重建整个造血系统。小鼠造血细胞移植是良好的实验模型,用于研究免疫分型特征、归巢能力、植入动力学、细胞因子反应和放射敏感性等干细胞生物学基本原理。灵长类动物也常用于人造血的研究,尤其适用于移植预处理方案的评估和细胞因子加速造血重建的临床前实验。利用免疫缺陷小鼠(如NOD/SCID)和胎羊进行异种移植,可以评估人造血细胞的植入性。

造血干/祖细胞体外检测方法

长期培养

利用造血细胞体外培养技术,可以检测处于不同分化阶段造血干细胞的增殖分化能力,确定某一群细胞或纯化的细胞群体中HSCs的频率。造血细胞长期培养(long-term culture, LTC)常利用预先贴壁的基质细胞作为滋养层,这些基质细胞为造血细胞提供刺激和抑制信号,调节细胞增殖。LTC有多种方法,如利用不同的滋养细胞(如原代培养的骨髓成纤维细胞或转化的细胞系),计数方法也有多种,常用极限稀释法进行频率计算。不管用什么方法,LTC培养1-3周的细胞代表相对成熟的造血祖细胞,而更长时间点(5-8周)的细胞来源于非常原始的细胞,称为长期培养启动细胞(long-term culture-initiating cells, LTC-IC)。3,4 StemCell科技公司提供系列特殊的液体培养体系、血清、血清替代物和细胞因子,用于造血祖细胞体外维持和增殖。

集落测定方法

集落形成细胞(colony-forming cell, CFC)培养用于检测某一细胞群体多潜能祖细胞和系列特异性祖细胞,如红系、粒系、单核-巨噬细胞系和巨核细胞系的含量。通常,将单细胞悬液接种于半固体培养基中,添加多种细胞因子,以促进单个祖细胞增殖分化,形成由数个至数十个子代细胞组成的集落。在光学显微镜下,可根据原位集落内成熟细胞的形态进行分类计数。在一定的接种细胞数范围内,CFC的数量应和接种细胞数成直线关系。总的来说,在适宜的培养条件下,更原始的造血祖细胞形成两系或三系细胞组成的集落(混合集落),而偏成熟的祖细胞形成的集落由单一系列细胞组成。前者需要的培养时间更长,以使细胞分化成成熟细胞。

从30年前该方法建立以来,集落培养已经广泛应用于基础和临床研究。CFC是LTC-IC的读出数据,也应用于测定造血干细胞富集和其它体外处理时祖细胞的含量。此外,CFC培养技术也用于明确造血刺激和抑制因子活性,评估造血移植时骨髓、脐带血和动员的外周血中造血细胞的增殖能力。作为造血细胞功能评估的实验室金标准,CFC是不同类型造血细胞增殖分化的功能指标,尤其适用于体外处理后造血细胞的功能评价,如去T细胞、造血干/祖细胞富集、基因治疗和细胞冻存等。再者,CFC也可作为筛选方法,利用人造血细胞或动物模型观察新药或化合物对三系或单系造血毒性,挑选出合适的药物应用于I期临床试验。StemCell科技公司提供相关的合同条款,利用我们提供的CFC检测系统进行毒性实验和新造血刺激化合物的活性评价,具有法定效力。

StemCell科技公司已经研发了一系列甲基纤维素和胶原培养基以及其它试剂,用于粒系、红系和巨核系祖细胞培养和计数。此外,StemCell科技公司设有相关培训课程,提供标准对照试剂盒以进行技术评价,来评估科研人员对该技术掌握的程度,增加受试者对该方法的了解,提高他们利用CFC进行造血细胞鉴定的熟练程度。

人造血干细胞的表型和分离

CD34

CD34是人们认识最早的造血细胞分化标志,也是人们在基础或临床研究中用于造血细胞富集最常用的表面分子。正常人的骨髓有核细胞中,约1-4%为CD34阳性,外周血中低于0.1%。在造血干细胞移植过程中,能使清髓受者多系造血重建的细胞,多数都表达CD34。这种观点已经在灵长类动物、免疫缺陷动物和胎羊造血移植中得到证实。5-7 当然,临床上的自体或异体造血细胞移植也证明了人CD34阳性细胞的植入能力。 8,9 CD34阳性细胞包括所有的LTC-IC、多数CFC和淋巴祖细胞,不含有终末分化的成熟血细胞。10-13 细胞因子和/或化疗可以动员骨髓造血细胞入血,使外周血CD34阳性细胞比例达1%以上。然后,通过白细胞分离术获得富集的造血细胞,在临床上用于外周血造血干细胞移植。14,15 造血植入需要一定的CD34阳性细胞的数量,一般在2×106/kg以上。但是,自体骨髓移植时由于疾病状态的不同,异基因骨髓移植时HLA配型的变化,都影响成功造血植入所需的CD34阳性细胞数量。同时, CD34细胞在造血移植物中的水平是预测移植是否成功有用的指标,但是,尤其由于体外扩增和其它处理,CD34水平有时并不与移植物中造血细胞的频率、活性和细胞的造血潜能相一致。

利用抗CD34单克隆抗体,借助FACS或免疫磁珠可以分离人CD34阳性细胞。这种阳性细胞分离的方法同样适用于狒狒、恒河猴或其它动物CD34细胞分离,只是换用动物相关特异性抗CD34抗体而已。StemCell科技公司供应阳性或阴性筛选试剂,用于人或其它灵长类动物的CD34细胞分离。

CD34作为人造血细胞的标志分子已经得到广泛的认同,但是,在人脐带血和成体造血组织中,也有一部分原始的CD34阴性细胞同样具有髓系和淋巴系重建能力。利用免疫缺陷小鼠和胎羊移植模型,已经证实这群CD34-造血干细胞的存在。16,17 同时,这群细胞在体内外均能分化为CD34+细胞。17-19 细胞不表达CD38和系列特异性抗原,表达CD133。20 利用胎羊移植模型进行造血连续移植的研究表明,人骨髓和动员的外周血中相当部分造血干细胞为CD34阴性。21 然而,利用NOD/SCID小鼠移植实验发现,人胎肝造血细胞群体中只有D34+细胞具有再生能力。22 因此,人造血细胞CD34表达远比我们以前的认识复杂多变,在揭示已定表型细胞群体造血能力时,尤应引起大家的注意。

HSCs缺乏系特异性标志

原始造血细胞,包括HSCs,不表达终末分化血细胞特有的表面标记。这些表面分子称为系列特异性标志(lineage-specific markers, or Lin markers)。利用Lin标记可以区分造血细胞群体中的幼稚和成熟细胞。用于人造血细胞分离的常用Lin标记包括:血型糖蛋白A、CD2、CD3、CD4、CD8、CD14、CD15、CD16、CD19、CD20、CD56和CD66b。利用这些系列标志进行造血细胞磁性或非磁性筛选,可使造血干/祖细胞富集20-500倍。

尽管利用Lin标记进行了造血细胞的富集,富集的细胞群体中CFC、LTC-IC和HSCs的比例仍然很低,分别低于20%、1%和0.1%。3,6,23-25 造血干/祖细胞与成熟细胞的分离,依赖于其它表面分子的表达特性。如CD38,它在大多数造血组织来源的CD34阳性细胞中,中度和高表达率在90%以上,多数的CFCs和60%的LTC-IC为CD34/CD38双阳性细胞。26,27 在免疫缺陷鼠造血移植模型中,这群双阳性细胞能引起迅速而短暂的造血重建。28-30 相反,CD34+/CD38-细胞具有长期稳定和多系造血重建能力,说明原始的造血干细胞存在于CD34+/CD38-细胞群体中。其它的标志分子,包括CD33、CD71、HLA-DR和CD45RA,高表达于某些系列成熟细胞类型,而在HSCs上不表达或低表达。31-35 利用这些标记,可以分离多潜能造血细胞和系列特异性造血祖细胞。36

利用Lin抗体去除系列特异性成熟细胞,利用抗CD38和CD45RA抗体去除系列限制性祖细胞,免疫磁珠一次性阴性筛选,可分离高度富集的造血细胞。也可用其它特异性标志,如Thy-1、c-kit和CD133,31,32,35,37,38 配合系列阴性筛选或CD34阳性筛选进行多潜能造血细胞的富集。

小鼠造血干细胞的表型和分离

和人造血干/祖细胞一样,小鼠源细胞也可以通过系列特异性标志的阴性筛选进行富集,这些标志包括CD3、B220、Gr-1、Mac-1和Ter119等。39 小鼠HSCs表达Sca-1(Ly-6A/E)、c-Kit和Thy-1,39-41而红系、粒系和巨核系祖细胞只表达c-Kit,Sca-1却为阴性。42 去除Lin特异性细胞,结合c-Kit与Sca-1阳性筛选,是分离小鼠造血干/祖细胞的常用方法。但是,必须注意的是,不同品系的小鼠血细胞Sca-1表达量是不同的。43 例如,C57/BL小鼠Sca-1高表达,而BALB/c表达量很低。除利用Sca-1外,也可以用其它方法分离小鼠HSCs。44 如:罗丹明123和Hoechst33342染料染色,或与麦精凝集素结合后,利用FACS筛选,或利用c-Kit进行阳性筛选等。

小鼠原始造血细胞也表达CD34,但是,小鼠CD34基因表达的调节方式与人不同。45 一般认为,所有的小鼠胎肝源HSCs为CD34阳性,幼鼠骨髓细胞中约50%HSCs表达CD34,46 而成年鼠90%左右的HSCs为CD34阴性。在成年鼠骨髓c-Kit+/Sca-1+/Lin-细胞群体中,CD34-细胞细胞亚群HSCs的含量是CD34+亚群的5倍。41 CD34在小鼠HSCs上的表达,不仅与造血细胞发育阶段,也与细胞的活化状态有关。47 因此,即使在成年鼠造血细胞发育过程中,随着造血干/祖细胞的发育分化,CD34反而高表达。CD34常常被认为小鼠晚期造血祖细胞的标志,如定向髓系祖细胞(即common myeloid Progenitors, CMPs)。42

干细胞分离鉴定的新标志和新方法

乙醛脱氢酶(aldehyde dehydrogenase, ALDH; 国内常用NAD+表示)

原始造血细胞对烷化剂耐药,这些药物主要包括环磷酰胺和马法兰等。48这种耐药性与细胞高表达ALDH有关。49,50 利用荧光标记的ALDH底物,如StemCell科技公司生产的ALDEFLOUR试剂,可借助FACS鉴定、分离人和小鼠HSCs。在人骨髓细胞中,ALDH与CD34的表达是重叠的,FACS筛选的ALDH强阳性细胞,即为原始的造血细胞(包括定向造血祖细胞)。51-53 ALDH在人骨髓源CD34+/CD38-细胞上表达最高;如果从CD34+细胞中分离ALDH高表达细胞,所得的细胞中LTC-IC(8周)富集2倍左右。52 在CD34-/CD38-细胞中,也有少数表达ALDH,提示可以利用ALDH对CD34-细胞群进行阳性筛选以富集造血干/祖细胞。当然,ALDH++/CD34-细胞的功能仍需进一步评价。

旁群细胞

表型和功能研究已经证实,造血干/祖细胞可以将线粒体和DNA荧光染料罗丹明123和Hoechst33342排出细胞外。流式细胞仪检测时,在荧光强度和细胞大小为参数的流式散点图上,可以看到很少的Hoechstlow干细胞位于其它分析细胞的一旁,形成独特的流式图像,所以称之为旁群细胞(side population, SP)。SP细胞在多种种类动物,如小鼠、猴和人的造血组织中存在。54 小鼠骨髓中的SP细胞在移植后可以形成心肌细胞和内皮细胞,55 说明SP细胞是一群不均一的群体,其中也含有非造血组织干细胞。SP细胞不表达系列特异性抗原,因此,在FACS分选SP细胞前,可以先用阴性筛选的方法去除成熟细胞,使SP细胞富集,以减少FACS分选的时间。出现SP表型,是由于干/祖细胞细胞膜上存在转移酶,这种酶活性与肿瘤细胞的多药耐药性有关。尽管原始细胞上表达几种转移酶分子,但是,ABCG2的表达对细胞排出荧光染料是必需的。如细胞只表达ABCG2,也足可以将染料泵出。56,57 ABCG2在原始细胞中高表达,随着细胞分化过程而逐渐减低,因此,ABCG2作为一种表面标志对HSCs的分离鉴定,具有潜在的应用价值。

内皮蛋白C受体(CD201)

内皮蛋白C受体(endothelial protein C receptor, EPCR)是通过对高度纯化的造血干/祖细胞基因型分析,而获得的一个新的造血细胞标志分子。58,59 EPCR最早发现于内皮细胞,参与调节凝血和炎性反应。它的配基是蛋白C和活化的蛋白C。60 富集的鼠骨髓造血细胞与富集后剩余的细胞相比,前者EPCR阳性率是后者的40倍。59,61 纯化的鼠EPCR阳性细胞相当于富集的造血干/祖细胞,提示EPCR(CD201)可以作为一种标记分子用于鉴定和分离小鼠HSCs。61 人造血细胞也表达EPCR,提示EPCR可以用于人HSCs的分离。

干细胞操作:扩增、归巢和细胞因子治疗

最理想的促进造血移植后重建的策略是:(1)提高移植物中具有重建能力的HSCs的质量和数量;(2)提升移植的HSCs归巢于造血组织的效率;(3)在保证干细胞池稳定的情况下,加速植入的HSCs增殖并向成熟细胞分化。然而,到目前为止,想在移植前通过体外处理来增加HSCs的数量、改善HSCs质量,是十分困难的。人们已经进行了多种尝试,以期培养扩增干细胞。有些研究提示,应用特定的无血清培养基、某些基质细胞系或/和早期阶段造血细胞作用因子,可以使CD34+细胞和集落形成祖细胞大量扩增。然而,随后的研究表明,体外处理后,更原始的LTC-IC和具有植入性的干细胞数量增加有限,常不超过4倍。62-64 但是,如果将HOXB4基因通过反转录载体转染小鼠造血细胞,扩增倍数可超过40倍;65 将HOXB4蛋白加入培养体系中,造血细胞扩增有限,但仍比未加HOXB4的体系多3倍。66 这些结果提示,通过体外培养的方法进行造血细胞的扩增是可行的;通过药物作用细胞内调节机制,有可能达到移植前造血干细胞扩增的目的,这种方法可能最终应用于临床实际中。

有人也曾尝试提高造血细胞趋化因子SDF-1(基质细胞因子-1)活性,增加造血细胞SDF-1受体CXCR4表达,以促进移植的造血细胞归巢。67 比如,在移植物中加入某些小分子物质,可以抑制细胞外膜蛋白酶CD26的活性,以减少SDF-1和其它趋化因子的蛋白裂解灭活,从而增加造血细胞的植入和归巢。68 当然,这些方法的有效性仍需要临床前试验或临床试验证实,但最终可能应用于接受小移植的病人。

注射细胞因子以促进移植后造血细胞的再生,也是一种有前途的治疗方案。但是,这种方案仍处于试验阶段。像G-CSF、GM-CSF、SCF和Tpo这些造血细胞因子,在放化疗后骨髓抑制时注射,可促进内源性造血细胞的再生,有效缩短三系缺乏期。然而,清髓和骨髓移植后应用细胞因子效果较差,某些病例可能出现副作用,如急性过敏反应和产生细胞因子抗体等。69,70 为改善细胞因子的治疗效果,减少副作用发生,必须进行计划细胞因子用量,或使用工程化的细胞因子。71,72 此外,根据细胞因子的结构,通过cDNA剪接技术合成具有细胞因子活性的小分子肽替代物,可改善细胞因子药物特性,降低其诸如毒性和免疫原性等副作用。73 这些小分子替代物也能改进细胞因子的治疗效果。

基因治疗

最近几年,由于干细胞生物学、载体设计、细胞培养和基因转染系统研究不断深入,外源基因在造血干细胞及其子代细胞中的稳定整合和表达效率逐步提高,并使转染后干细胞特性得以维持。利用这些技术,通过基因修饰造血细胞治疗儿童免疫缺陷性疾病,已经在临床试验中获得成功。74,75 但是,由于外源基因随机整合活化了LMO2原癌基因,以及随后的恶性克隆扩增,某些病例出现了白血病并发症。76 这些报告说明,利用基因修饰造血细胞治疗基因突变遗传性或获得性疾病,目前仍处于初级阶段,在其成为安全可供选择的治疗方案之前,仍有很多技术性问题需要克服。干细胞基因治疗或其他干细胞应用治疗的进展,依赖于人们对正常干细胞命运和干细胞恶变中,相关调节机制和分子的进一步了解,也依赖于新工具和新技术的研发,以鉴定、分离、培养、基因修饰干细胞。

注:加拿大StemCell 技术公司和杭州百通生物技术有限公司联合推出造血干祖细胞分选和培养系列产品详情请向杭州百通生物技术有限公司垂询,联系电话:0571-89902325 或登陆网站http://www.stemcell.com或http://www.biowish.com。

参考文献:

1. Orkin SH, Zon LI: Hematopoiesis and stem cells: Plasticity versus developmental heterogeneity. Nat Immunol 3: 323-328, 2002

2. Wulf GG, Jackson KA, Goodell MA: Somatic stem cell plasticity: Current evidence and emerging concepts. Exp Hematol 29: 1361-1370, 2001

3. Miller CL, Eaves CJ: Long-term culture-initiating cell assay for human and murine cells, in Klug CA, Jordan CT (eds): Hematopoietic Stem Cell Protocols, Totowa, NJ, Humana

Press Inc., pp 123-141, 2002

4. De Haan G, Ploemacher R: The cobblestone-area forming cell assay., in Klug C, Jordan C (eds): Hematopoietic Stem Cell Protocols. Methods in Molecular Medicine., Totowa, NJ, Humana Press, pp 143-151, 2002

5. Zanjani ED, Almaida-Porada G, Ascensao JL, MacKintosh FR, Flake AW: Transplantation of hematopoietic stem cells in utero. Stem Cells 15: 79-92, 1997

6. Larochelle A, Vormoor J, Hanenberg H, Wang JCY, Bhatia M, Lapidot T, Moritz T, Murdoch B, Xiao XL, Kato I, Williams DA, Dick JE: Identification of primitive human hematopoietic

cells capable of repopulating NOD/SCID mouse bone marrow: Implications for gene therapy. Nat Med 2: 1329-1337, 1996

7. Andrews RG, Bryant EM, Bartelmez SH, Muirhead DY, Knitter GH, Bensinger W, Strong DM: CD34+ marrow cells, devoid of T and B lymphocytes, reconstitute stable lymphopoiesis and myelopoiesis in lethally irradiated allogeneic baboons. Blood 80: 1693-1701, 1992

8. Civin CI, Trischmann T, Kadan NS, Davis J, Noga S, Cohen K, Duffy B, Groenewegen I, Wiley J, Law P, Hardwick A, Oldham F, Gee A: Highly purified CD34-positive cells reconstitute hematopoiesis. J Clin Oncol 14: 2224-2233, 1996

9. Vogel W, Scheding S, Kanz L, Brugger W: Clinical applications of CD34(+) peripheral blood progenitor cells (PBPC). Stem Cells 18: 87-92, 2002

10. Civin CI, Strauss LC, Brovall C, Fackler MJ, Schwartz JF, Shaper JH: Antigenic analysis of hematopoiesis. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J.Immunol. 133: 157-165, 1984

11. Strauss LC, Rowley SD, La Russa VF, Sharkis SJ, Stuart RK, Civin CI: Antigenic analysis of hematopiesis. V. Characterization of My-10 antigen expression by normal lymphohematopoietic progenitor cells. Exp Hematol 14: 878-886, 1986

12. Saeland S, Duvert V, Caux C, Pandrau D, Favre C, Valle A, Durand I, Charbord P, de Vries J, Banchereau J: Distribution of surface-membrane molecules on bone marrow and cord blood CD34+ hematopoietic cells. Exp Hematol 20: 24-33, 1992

13. Terstappen LW, Huang S, Picker LJ: Flow cytometric assessment of human T-cell differentiation in thymus and bone marrow. Blood 79: 666-677, 1992

14. Watts MJ, Linch DC: Peripheral blood stem cell transplantation. Vox Sang. 73: 135-142, 1997

15. K rbling M, Anderlini P: Peripheral blood stem cell versus bone marrow allotransplantation: Does the source of hematopoietic stem cells matter? Blood 98: 2900-2908, 2001

16. Zanjani E, Almeida-Porada G, Livingston AG, Flake AW, Ogawa M: Human bone marrow CD34- cells engraft in vivoand undergo multilineage expression that includes giving rise to CD34+ cells. Exp.Hematol. 26: 353-360, 1998

17. Bhatia M, Bonnet D, Murdoch B, Gan OI, Dick JE: A newly discovered class of human hematopoietic cells with SCID-repopulating activity. Nat Med 4: 1038-1045, 1998

18. Nakamura Y, Ando K, Chargui J, Kawada H, Sato T, Tsuji T, Hotta T, Kato S: Ex vivo generation of CD34+ cells from CD34- hematopoietic cells. Blood 94: 4053-4059, 1999

19. Zanjani ED, Almeida-Porada G, Livingston AG, Zeng H, Ogawa M: Reversible expression of CD34 by adult human bone marrow long-term engrafting hematopoietic stem cells. Exp Hematol 31: 406-412, 2003

20. Gallacher L, Murdoch B, Wu DM, Karanu FN, Keeney M, Bhatia M: Isolation and characterization of human CD34-Lin- and CD34+Lin- hematopoietic stem cells using cell surface markers AC133 and CD7. Blood 95: 2813-2820, 2000

21. Verfaillie CM, Almeida-Porada G, Wissink S, Zanjani ED: Kinetics of engraftment of CD34- and CD34+ cells from mobilized blood differes from that of CD34- and CD34+ cells from bone marrow. Exp.Hematol. 28: 1071-1079, 2000

22. Uchida N, Fujisaki T, Eaves AC, Eaves CJ: Transplantable hematopoietic stem cells in human fetal liver have a CD34+ side population (SP) phenotype. J.Clin.Invest. 108: 1071-1077, 2001

23. Szilvassy SJ, Nicolini FE, Eaves CJ, Miller CL: Quantitation of murine and human hematopoietic stem cells by limiting-dilution analysis in competitively repopulated hosts, in Klug CA, Jordan CT (eds): Hematopoietic Stem Cell Protocols, Totowa, NJ, Humana Press

Inc., pp 167-187, 2002

24. Wang JCY, Doedens M, Dick JE: Primitive human hematopoietic cells are enriched in cord blood compared with adult bone marrow or mobilized peripheral blood as measured by the quantitative in vivoSCID-repopulating cell assay. Blood 89: 3919-3924, 1997

25. Holyoake TL, Nicolini FE, Eaves CJ: Functional differences between transplantable human hematopoietic stem cells from fetal liver, cord blood and adult marrow. Exp.Hematol. 27: 1418-1427, 1999

26. Terstappen LWMM, Huang S, Safford M, Lansdorp PM, Loken MR: Sequential generations of hematopoietic colonies derived from single nonlineage-committed CD34+CD38- progenitor cells. Blood 77: 1218-1227. 1991

27. Hogge DE, Lansdorp PM, Reid D, Gerhard B, Eaves CJ: Enhanced detection, maintenance, and differentiation of primitive human hematopoietic cells in cultures containing murine fibroblasts engineered to produce human steel factor, interleukin-3, and granulocyte colonystimulating factor. Blood 88: 3765-3773, 1996

28. Verstegen MMA, van Hennik PB, Terpstra W, van den Bos C, Wielenga JJ, van Rooijen N, Ploemacher RE, Wagemaker G, Wognum AW: Transplantation of human umbilical cord blood cells in macrophage-depleted SCID mice: evidence for accessory cell involvement in expansion of immature CD34+CD38- cells. Blood 91: 1966-1976, 1998

29. Hogan CJ, Shpall EJ, Keller G: Differential long-term and multilineage engraftment potential from subfractions of human CD34+ cord blood cells transplanted into NOD/SCID mice. Proc Natl Acad Sci USA 99: 413-418, 2002

30. Mazurier F, Doedens M, Gan OI, Dick JE: Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD-SCID mice reveals a new class of human stem cells. Nat Med 9: 959-963, 2003

31. Andrews RG, Singer JW, Bernstein ID: Precursors of colony-forming cells in humans can be distinguished from colony-forming cells by expression of the CD33 and CD34 antigens and light scatter properties. J Exp Med 169: 1721-1731, 1989

32. Lansdorp PM, Sutherland HJ, Eaves CJ: Selective expression of CD45 isoforms on functional subpopulations of CD34+ hemopoietic cells from human bone marrow. J.Exp.Med. 172: 363-366, 1990

33. Mayani H, Dragowska W, Lansdorp PM: Characterization of functionally distinct subpopulations of CD34+ cord blood cells in serum-free long-term cultures supplemented with hematopoietic cytokines. Blood 82: 2664-2672, 1993

34. Lansdorp PM, Dragowska W: Long-term erythropoiesis from constant numbers of CD34+ cells in serum-free cultures initiated with highly purified progenitor cells from human bone marrow. J.Exp.Med. 175: 1501-1509, 1992

35. Sutherland HJ, Eaves CJ, Eaves AC, Dragowska W, Lansdorp PM: Characterization and partial purification of human marrow cells capable of initiating long-term hematopoiesis in vitro. Blood 74: 1563-1570, 1989

36. Thomas TE, Miller CL, Eaves CJ: Purification of hematopoietic stem cells for further biological study. Methods: A Companion to Methods in Enzymology 17: 202-218, 1999

37. Craig W, Kay R, Cutler RL, Lansdorp PM: Expression of Thy-1 on human hematopoietic progenitor cells. J.Exp.Med. 177: 1331-1342, 1993

38. Yin AH, Miraglia S, Zanjani E, Almeida-Porada G, Ogawa M, Leary AG, Olweus J, Kearney J, Buck DW: AC133, a Novel Marker for Human Hematopoietic Stem and Progenitor Cells. Blood 90: 5002-5012, 1997

39. Spangrude GJ, Heimfeld S, Weissman IL: Purification and characterization of mouse hematopoietic stem cells. Science 241: 58-62, 1988

40. Uchida N, Weissman IL: Searching for hematopoietic stem cells: evidence that Thy-1.1lo Lin- Sca-1+ cells are the only stem cells in C57BL/Ka-Thy-1.1 bone marrow. J.Exp.Med. 175: 175-184, 1992

41. Osawa M, Hanada K, Hamada H, Nakauchi H: Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273: 242-245, 1996

42. Akashi K, Traver D, Miyamoto T: A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404: 193-197, 2000

43. Spangrude GJ, Brooks DM: Mouse strain variability in the expression of the hematopoietic stem cell antigen Ly6A/E by bone marrow cells. Blood 82: 3327-3332, 1993

44. Van der Loo JC, Van den Bos C, Baert MRM, Wagemaker G, Ploemacher RE: Stable multilineage hematopoietic chimerism in alpha-thalassemic mice induced by a bone marrow subpopulation that excludes the majority of day-12 spleen colony-forming units. Blood 83: 1769-1777, 1994

45. Okuno Y, Huettner CS, Radomska HS, Petkova V, Iwasaki H, Akashi K, Tenen DG: Distal elements are critical for human CD34 expression in vivo. Blood 100: 4420-4426, 2002

46. Morel F, Galy A, Chen B, Szilvassy SJ: Equal distribution of competitive long-term repopulating stem cells in the CD34+ and CD34- fractions of Thy-1low Lin-/lowSca-1+ bone marrow cells. Exp Hematol 26: 440-448, 1998

47. Sato T, Laver JH, Ogawa M: Reversible expression of CD34 by murine hematopoietic stem cells. Blood 94: 2548-2554, 1999

48. Gordon MY, Goldman JM, Gordon-Smith EC: 4-hydroperoxycyclophosphamide inhibits proliferation by human granulocyte-macrophage colony-forming cells (GM-CFC) but spares more primitive progenitor cells. Leuk Res 9: 1017-1021, 1985

49. Sahovic EA, Colvin M, Hilton J, Ogawa M: Role of aldehyde dehydrogenase in survival of progenitors for murine blast cell colonies after treatment with 4-hydroperoxycyclophosphamide in vitro. Cancer Research 48: 1223-1226, 1998

50. Moreb JS, Turner C, Sreerama L, Zucali JR, Sladek NE, Schweder M: Interleukin-1 and tumor necrosis factor alpha induce class 1 aldehyde dehydrogenase mRNA and protein in bone marrow cells. Leuk Lymphoma 20: 77-84, 1995

51. Jones RJ, Barber JP, Vala MS, Collector MI, Kaufmann SH, Ludeman SM, Colvin OM, Hilton J: Assessment of aldehyde dehydrogenase in viable cells. Blood 85: 2742-2746, 1995

52. Storms RW, Trujillo AP, Springer JB, Shah L, Colvin OM, Ludeman SM, Smith C: Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proc Natl Acad Sci USA 96: 9118-9123, 1999

53. Fallon P, Gentry T, Balber AE, Boulware D, Janssen WE, Smilee R, Storms RW, Smith C: Mobilized peripheral blood SSCloALDHbr cells have the phenotypic and functional properties of primitive haematopoietic cells and their number correlates with engraftment following autologous transplantation. Br J Haematol. 122: 99-108, 2003

54. Goodell MA, Rosenzweig M, Kim H, Marks DF, DeMaria M, Paradis G, Grupp SA, Sieff CA, Mulligan RC, Johnson RP: Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 3:1337-1345, 1997

55. Jackson KA, Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW, Entman ML, Michael LH, Hirschi KK, Goodell MA: Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 107: 1395-1402, 2001

56. Zhou S, Schuetz JD, Bunting KD, Colapietro A-M, Sampath J, Morris JJ, Lagutina I, Grosveld GC, Osawa M, Nakauchi H, Sorrentino BP: The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7: 1028-1038, 2001

57. Zhou S, Morris JJ, Barnes Y, Lan L, Schuetz JD, Sorrentino BP: Bcrp1 gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo. Proc Natl Acad Sci USA 99: 12339-12344, 2002

58. Akashi K, He X, Chen J, Iwasaki H, Niu C, Steenhard B, Zhang J, Haug J, Li L: Transcriptional accessibility for genes of multiple tissues and hematopoietic lineages is hierarchically controlled during early hematopoiesis. Blood 101: 383-389, 2003

59. Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR: A stem cell molecular signature. Science 298: 601-604, 2002

60. Fukudome K, Esmon CT: Identification, cloning, and regulation of a novel endothelial cell protein C/activated protein C receptor. J Biol Chem 269: 26486-26491, 1994

61. Balazs AB, Mulligan RC: Novel marker for hematopoietic stem cells. From Stem Cells to Therapy Keystone Meeting, Steamboat Springs, March 29-April 3, 2003 (abstr.)

62. Miller CL, Eaves CJ: Expansion in vitroof adult murine hematopoietic stem cells with transplantable lympho-myeloid reconstituting ability. Proc Natl Acad Sci USA 94: 13648-13653, 1997

63. Bhatia M, Bonnett D, Kapp U, Wang JCY, Murdoch B, Dick JE: Quantitative analysis reveals expansion of human hematopoietic repopulating cells after short-term ex vivoculture. J Exp Med 186: 619-624, 1997

64. Conneally E, Cashman J, Petzer A, Eaves C: Expansion in vitroof transplantable human cord blood stem cells demonstrated using a quantitative assay of their lympho-myeloid repopulating activity in nonobese diabetic-scid/scid mice. Proc Natl Acad Sci USA 94: 9836-9841, 1997

65. Miller CL, Imren S, Antonchuk J, Kalberer C, Fabry ME, Nagel RL, Humphries RK, Eaves CJ: Feasibility of using autologous transplantation to evaluate hematopoietic stem cell-based gene therapy strategies in transgenic mouse models of human disease. Mol Ther 6: 422-428, 2002

66. Krosl J, Austin P, Beslu N, Kroon E, Humphries RK, Sauvageau G: In vitroexpansion of hematopoietic stem cells by recombinant TAT-HOXB4 protein. Nat Med 9: 1428-1432, 2003

67. Kollet O, Petit I, Kahn J, Samira S, Dar A, Peled A, Deutsch V, Gunetti M, Piacibello W, Nagler A, Lapidot T: Human CD34+CXCR4- sorted cells harbor intracellular CXCR4, which can be functionally expressed and provide NOD/SCID repopulation. Blood 100: 2778-2786,2002

68. Christopherson KW, Hangoc G, Mantel CR, Broxmeyer HE: Modulation of hematopoietic stem cell homing and engraftment by CD26. Science 305: 1000-1003, 2004

69. Wagemaker G, Neelis KJ, Hartong SC, Wognum AW, Thomas GR, Fielder PJ, Eaton DL: The efficacy of recombinant TPO in murine and nonhuman primate models for radiation-induced myelosuppression and stem cell transplantation. Stem Cells 16: 375-386, 1998

70. Ruscoe JE, Rosario LA, Ward T, Gate L, Arifoglu P, Wolf CR, Henderson CJ, Ronai Z, Tew KD: Pharmacologic or genetic manipulation of glutathione S-Transferase P1-1 (GSTpi) influences cell proliferation pathways. J Pharmacol Exp Ther 298: 339-345, 2001

71. Verstegen MMA, Wognum AW, Wagemaker G: Thrombopoietin is a major limiting factor for selective outgrowth of human umbilical cord blood cells in non-obese diabetic/severe combined immunodeficient recipient mice. Br J Haematol. 122: 837-846, 2003

72. Farese AM, MacVittie TJ, Roskos L, Stead RB: Hematopoietic recovery following autologous bone marrow transplantation in a nonhuman primate: effect of variation in treatment schedule with PEG-rHuMGDF. Stem Cells 2003. 21: 79-89, 2003

73. Qureshi SA, Kim RM, Konteatis Z, Biazzo DE, Motamedi H, Rodrigues R, Boice JA, Calaycay JR, Bednarek MA, Griffin P, Gao YD, Chapman K, Mark DF: Mimicry of erythropoietin by a nonpeptide molecule. Proc Natl Acad Sci USA 96: 12156-12161, 1999

74. Hacein-Bey S, Le Deist F, Carlier F, Bouneaud C, Hue C, De Villartay J-P, Thrasher AJ, Wulffraat N, Sorensen R, Dupuis-Girod S, Fischer A, Cavazzana-Calvo M: Sustained correction of X- linked severe combined immunodeficiency by ex vivogene therapy. N Engl J Med 346: 1185-1193, 2002

75. Aiuti A, Slavin S, Aker M, Ficara F, Deola S, Mortellaro A, Morecki S, Andolfi G, Tabucchi A, Carlucci F, Marinello E, Cattaneo F, Vai S, Servida P, Miniero R, Roncarolo MG, Bodignon C: Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 296: 2410-2413, 2002

76. Hacein-Bey S, von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, Lim A, Osborne CS, Pawliuk R, Morillon E, Sorensen R, Forster A, Fraser P, Cohen JI, de Saint B, Alexander I, Wintergerst U, Frebourg T, Aurias A, Stoppa-Lyonnet D, Romana S, Radford-Weiss I, Gross F, Valensi F, Delabesse E, Macintyre E, Sigaux F, Soulier J, Leiva LE, Wissler

M, Prinz C, Rabbitts TH, Le Deist F, Fischer A, Cavazzana-Calvo M: LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302: 415-419, 2003

Hematopoietic Stem Cells page 6