
Description
Numerous techniques have been developed to prepare immunoliposomes based on the nucleophilic reactivity of free amine groups of proteins or peptides. One of the most popular and commonly used methods is to covalently couple free carboxylic groups to primary amines through activation of the carboxyl groups with EDC (1-ethyl-3-[3-dimethylaminopropyl] carbodiimide). EDC, which is a so-called zero-length crosslinking agent, reacts with the carboxyl to form an amine reactive intermediate (O-acylisourea). The produced O-acylisourea can be easily displaced by nucleophilic attack from the primary amino groups in the reaction mixture. However, this intermediate is unstable and hydrolyzed in aqueous solutions. In order to prevent the intermediate hydrolysis, sulfo-NHS (N-hydroxysulfosuccinimide) is added to EDC to produce a significantly more stable and more soluble active intermediate (NHS ester).
Consequently, the immunoliposomes are prepared by a two-step coupling procedure: first, activating the free carboxyl group of the linker lipid incorporated in the liposomes with EDC and sulfo-NHS, and then covalently conjugating the antibodies to the lipids through displacement of sulfo-NHS groups by antibody amines, as depicted below. EDC/sulfo-NHS coupling reactions are highly selective and highly efficient, and the biological activity of the protein or peptide is preserved.

Immunosome®-Succinyl is a non-PEGylated product. For other amine reactive (PEGylated and non-PEGyalated products) and also Immunosome® products suitable for other types conjugation methods see here.
Formulation Information
Immunosome®-Succinyl (Non-PEGylated)
Lipid Composition | Concentration (mg/ml) | Concentration (mM) | Molar Ratio Percentage |
---|---|---|---|
Total | 14.79 mg/ml | 22.45 mM | 100 |
L-alpha-Phosphatidylcholine | 12 | 15.5 | 69 |
Cholesterol | 2.6 | 6.73 | 30 |
1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine-N-(succinyl)![]() | 0.19 | 0.22 | 1 |
Buffers and Liposome Size | Specification |
---|---|
Buffer | Phosphate Buffered Saline |
pH | 6 * |
Liposome Size | 100 nm |
* In order to have a highly efficientactivation reaction with EDC and Sulfo-NHS, pH of PBS buffer was adjusted to 6. |
Conjugation Protocol
Materials and Equipment
In order to conjugate the amine on your antibody, protein or peptide to Immunosome®-Succinyl (Non-PEGylated) liposomes you will need:
- EDC (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride). The solution should be made fresh moments before use.
- Sulfo-NHS (N-hydroxysulfosuccinimide). The solution should be made fresh moments before use.
- Sephadex® spin column: Sephadex size exclusion spin column can be used for separation of liposomes form free EDC (MW: 191.70). Since EDC is being separated from large liposome particles then any sizes of Sephadex® spin column such as G-10, G-15, G-25, G50 can be used. However, keep in mind that you will lose a large percentage of your liposomes on the spin column. Alternatively, instead of removing the EDC by spin column you can quench it by using 2-mercaptoethanol.
- 2-Mercaptoethanol: To quench the unreacted EDC, 2-mercaptoethanol is added to form a stable complex with the remaining carbodiimide. The 2-mercaptoethanol might not be necessary if you prefer to clean up your liposome from free EDC using a spin column.
- Float-A-Lyzer® with a proper MWCO that easily allows the cleanup of your liposome conjugated ligand from free and non-conjugated protein, peptide or antibody. You need to make sure that the MWCO is below 1,000,000 dalton. At 1,000,000 dalton, the pore size on the dialysis membrane gets close to 100 nm and therefore your liposomes can be dialyzed out. You cannot use dialysis cassettes blindly. Please understand the technique before using either spin column or dialysis cassette. If you do not use the correct MWCO, you can lose your entire prep. For this protocol, we recommend MWCO of 300,000 dalton.
Preparation Method
The two-step protocol includes the activation of carboxyl group-containing liposomes with EDC/sulfo-NHS, and subsequent conjugation with the amine group on the proteins, peptides or antibodies:
- In order to activate the carboxyl groups on the liposomes, EDC and sulfo-NHS should be added to the liposomes. The total lipid concentration in Immunosome®-Succinyl (Non-PEGylated) is 22.45 mM. 1% mol of the lipid in liposomes contains COOH group and only half of them are exposed to the outside of the liposomes, which is equal to 0.11 mM of reactive conjugable lipid. For 2 ml volume liposome, this is equal to 2.20×10-7 mol, and for 5 ml volume liposome, this is equal of 5.50×10-7 mol of COOH. Add 10-fold molar excess of EDC and 25-fold molar excess of sulfo-NHS to Immunosome®-Succinyl (Non-PEGylated). To aid in aliquoting the correct amount of these reagents, they may be quickly dissolved in the PBS buffer at a higher concentration, and then a proper volume immediately pipetted into the protein solution to obtain the proper molar quantities.
- Mix well and allow the reaction to proceed for 15 min at room temperature.
- Before adding the protein, peptide or antibody, remove the excess EDC either using a size exclusion spin column, such as Sephadex® spin column or through quenching by 2-mercaptoethanol at a 20 mM final concentration. Addition of 2-mercaptoethanol will not impact the liposomes.
- Dissolve the protein, peptide or antibody at 1-10 mg/ml, depending on the antibody, protein or peptide, in PBS or other amine-free, carboxylate free buffer, pH 7-8.
- Add the protein, peptide or antibody to the EDC/Sulfo-NHS activated Immunosome®-Succinyl (Non-PEGylated) liposomes. The molar ratio of the reactive carboxyl lipid to protein, peptide or antibody is preferred to be around 10:1. The total lipid concentration in our liposomes is 22.45 mM. 1% mol of the lipid in liposomes contains COOH group and only half of them are exposed to the outside of the liposomes, which is equal to 0.11 mM of reactive conjugable lipid. For a 2 ml volume liposome this is equal to 2.20×10-7 mol and for 5 ml volume liposomes this is equal of 5.50×10-7 mol of COOH. You will need to calculate the total mol of your peptide, protein or ligand in your solution and add 1:10 molar ratio of ligand to lipid.
- Mix well and allow to react for 2 h at room temperature.
- Remove the non-conjugated protein, peptide or antibody from the immunoliposomes by dialysis. We prefer dialysis to size exclusion columns. Dialysis is a much slower process but there will be minimum loss of immunoliposomes after the prep is cleaned from non-conjugated protein/peptide/ligand. Spin columns are much faster; however, you can easily lose over 50% of the liposomes on the spin column. We recommend using Float-A-Lyzer® dialysis cassette from Spectrum Labs. You will need to choose a cassette with proper MWCO depending on the MW of your protein, peptide, antibody or antibody fragment. NOTE: If you decide to use a dialysis cassette, you will need to make sure that the MWCO is below 1,000,000 dalton. At 1,000,000 dalton, the pore size on the dialysis membrane gets close to 100 nm and therefore, your liposomes can be dialyzed out. You cannot use dialysis cassettes and spin columns blindly. They come in various sizes and you need to choose the correct size wisely. Dialyze the immunoliposome solution in 1 liter of PBS at pH 7.4 for 8 hours. Change the dialysis buffer with a fresh 1 liter of PBS and let is dialyze for another 8 hours. After this step, your cleaned up immunoliposome is ready to be used.
Liposome Particle Calculator
Immunosomes are unilamellar liposomes and sized to 100 nm. The molar concentration of liposome is 22.45 mM. By having liposome diameter (nm) and lipid concentration (µM), you can calculate the total number of the lipids in one liposome and the number of the liposomes in one milliliter of the liposome solution. To use the calculator click here.
Technical Notes
- EDC and sulfo-NHS should be prepared immediately before use and kept at room temperature.
- The activation reaction with EDC and Sulfo-NHS is most efficient at pH 4.5-7.2, and EDC reactions are often performed in at pH 4.7-6.0. For this reason, we have formulated the liposomes in PBS buffer and adjusted the pH to 6.
- Reaction of Sulfo-NHS-activated molecules with primary amines is most efficient at pH 7-8, and Sulfo-NHS-ester reactions are usually performed in phosphate-buffered saline (PBS) at pH 7.2-7.5
- Tris buffer should never be used in any step of the process since it contains amine.
- If you are using a ligand or peptide that is hydrophobic then it is recommended to solubilize it in DMSO or DMF and then add the buffer to it. It is recommended not to use more than 5% volume of DMSO or DMF in the solution. DMF and DMSO are both compatible with liposomes and they are also miscible in water. Other organic solvent such as ethanol and chloroform are not compatible with liposomes and will cause the liposomes to lyse. If you end up using DMSO or DMF then after the conjugation reaction is done, you need to remove DMSO and DMF from the liposomes. In order to do that you need to use a dialysis cassette that is made from REGENERATED CELLULOSE MEMBRANE. NOTE: Not all membranes are compatible with DMF and DMSO. We recommend using a Slide-A-Lyzer™ MINI Dialysis Device with MWCO of 2K made from regenerated cellulose membrane manufactured by ThermoFisher. After DMSO or DMF is removed you can use Float-A-Lyzer® dialysis device for the final step of cleaning up the prep.
- Liposomes should be kept at 4°C and NEVER be frozen.
Database
Direct link to the database page for easy navigation: Immunoliposomes Conjugation Database
Appearance
Immunosome®-Succinyl is a white translucent liquid made of nano size unilamellar liposomes. Usually due to the small size of liposomes no settling will occur in the bottom of the vial. The liposomes are packaged in an amber vial.
Ordering/Shipping Information
- All liposome based formulations are shipped on blue ice at 4°C in insulated packages using overnight shipping or international express shipping.
- Liposomes should NEVER be frozen. Ice crystals that form in the lipid membrane can rupture the membrane, change the size of the liposomes and cause the encapsulated drug to leak out. Liposomes in liquid form should always be kept in the refrigerator.
- Clients who order from outside of the United States of America are responsible for their government import taxes and customs paperwork. Encapsula NanoSciences is NOT responsible for importation fees to countries outside of the United States of America.
- We strongly encourage the clients in Japan, Korea, Taiwan and China to order via a distributor. Tough customs clearance regulations in these countries will cause delay in custom clearance of these perishable formulations if ordered directly through us. Distributors can easily clear the packages from customs. To see the list of the distributors click here.
- Clients ordering from universities and research institutes in Australia should keep in mind that the liposome formulations are made from synthetic material and the formulations do not require a “permit to import quarantine material”. Liposomes are NOT biological products.
- If you would like your institute’s FedEx or DHL account to be charged for shipping, then please provide the account number at the time of ordering.
- Encapsula NanoSciences has no control over delays due to inclement weather or customs clearance delays. You will receive a FedEx or DHL tracking number once your order is confirmed. Contact FedEx or DHL in advance and make sure that the paperwork for customs is done on time. All subsequent shipping inquiries should be directed to Federal Express or DHL.
Storage and Shelf Life
Storage
Immunosome® products should always be stored at in the dark at 4°C, except when brought to room temperature for brief periods prior to animal dosing. DO NOT FREEZE. If the suspension is frozen, the encapsulated drug can be released from the liposomes thus limiting its effectiveness. In addition, the size of the liposomes will also change upon freezing and thawing.
Shelf Life
Immunosome®-Succinyl is made on daily basis. The batch that is shipped is manufactured on the same day. It is advised to use the products within 4 months of the manufacturing date.
References and background reading
1. Hermanson GT. Bioconjugate techniques. Academic press; 2013 Jul 25.
2. Torchilin V, Weissig V, editors. Liposomes: a practical approach. Oxford University Press; 2003 Jun 5.
3. Grabarek Z, Gergely J. Zero-length crosslinking procedure with the use of active esters. Analytical biochemistry. 1990 Feb 15;185(1):131-5.
4. Yan L, Crayton SH, Thawani JP, Amirshaghaghi A, Tsourkas A, Cheng Z. A pH‐Responsive Drug‐Delivery Platform Based on Glycol Chitosan–Coated Liposomes. Small. 2015 Oct 1;11(37):4870-4.
5. Silva-López EI, Edens LE, Barden AO, Keller DJ, Brozik JA. Conditions for liposome adsorption and bilayer formation on BSA passivated solid supports. Chemistry and physics of lipids. 2014 Oct 31;183:91-9.
6. Hazra M, Singh SK, and Ray S. Surface Modification of Liposomal Vaccines by Peptide Conjugation. Journal of PharmaSciTech, 2011; 1(1): 41-47.
ebiomall.com






>
>
>
>
>
>
>
>
>
>
>
>
DXY721认为:
悬浮细胞和贴壁细胞在转染过程中差别不大,主要差别在于转染后的筛选,当然如果你做的是瞬时转染就不存在筛选的问题了。
其实转染的过程很简单,问题是能不能转的进去的,转染率能有多少,转进去是否可以稳定表达目的蛋白等等。
我们也是用脂质体做悬浮细胞的转染,说明书上都有具体的操作过程,将脂质体和目的基因按比例混合,然后加到细胞悬液里就OK了,说的简单,实际上还是有一些细节要注意的,比如脂质体和目的基因混合的比例,转染的细胞数,细胞的代数,细胞的状态,有的还要求在转染的前一天传代一次,不过不要怕,这些在脂质体说明书上都有明确的说明,按照说明书做就可以了。
jinghuanlv认为:
悬浮细胞和贴壁细胞转染还是有很大不同的。
脂质体转染的原理基于电荷吸引原理,先形成脂质体-DNA复合物,散布在细胞周围,然后通过细胞的内吞作用,将目的基因导入细胞内,而脂质体复合物与贴壁细胞的接触机会比悬浮细胞高出很多倍,所以,脂质体转染时悬浮细胞的转染效率要明显低于贴壁细胞。
我们实验室转染悬浮细胞是用的电穿孔法,目前为止,悬浮细胞转染的最好方法还是电转,我们实验室用的电转仪是Bio-Rad的,使用条件是电压250V,电容975uF,效果不错,不妨一用。
实验室一直都是用日常型质粒抽提试剂盒,转染细胞没问题。
我觉得只要是注意以下2点就可以了:
1,注意大肠杆菌(Escherichia coli)本身的污染,收集菌体沉淀时防止菌液散落,经常用75%的乙醇擦拭手套。
2,最后洗脱时最好使用无内毒素的水,我们是用注射用水的。
无论是小提还是大提我们都是用的日常型的,并没有刻意用转染级的,因为转染量大,去内毒素的操作太麻烦,损失太大。
不建议你用MDCK细胞,非常难转染。
但是有在转染前,将细胞进行重新传代的情况,这样做的目的在于保持细胞的活性状态。
“转染前将细胞以1.5-4.5X104 cells/well 的量(具体接细胞数请参考表1)接种在孔板中,于37℃, 5%CO2 的条件下进行培养,18-24小时( sf9细胞为3-4小时)后转染。”
“转化”是指含外源基因的重组质粒(载体)将外源基因直接导入原核细胞(如细菌);
“转导”指通过重组病毒载体将外源基因导入真核细胞或原核细胞;
“转染”指重组质粒载体或游离核苷酸在脂质体等介导下进入真核细胞;
“感染”在基因转移实验中强调重组病毒载体入侵受体细胞的过程。
在使用这4 个名词时, 应仔细分析基因转移实验的四要素——转移物、载体、介导方法、受体细胞类型,而正确区 分载体和受体细胞类型是辨析的关键点。当载体是重组质粒时,如受体细胞是原核细胞应使 用“转化”,如受体细胞是真核细胞则使用“转染”;当载体是重组病毒时,如强调转移物进 入受体细胞应使用“转导”,如强调重组病毒载体进入受体细胞的过程则使用“感染”。
DXY721认为:
悬浮细胞和贴壁细胞在转染过程中差别不大,主要差别在于转染后的筛选,当然如果你做的是瞬时转染就不存在筛选的问题了。
其实转染的过程很简单,问题是能不能转的进去的,转染率能有多少,转进去是否可以稳定表达目的蛋白等等。
我们也是用脂质体做悬浮细胞的转染,说明书上都有具体的操作过程,将脂质体和目的基因按比例混合,然后加到细胞悬液里就OK了,说的简单,实际上还是有一些细节要注意的,比如脂质体和目的基因混合的比例,转染的细胞数,细胞的代数,细胞的状态,有的还要求在转染的前一天传代一次,不过不要怕,这些在脂质体说明书上都有明确的说明,按照说明书做就可以了。
jinghuanlv认为:
悬浮细胞和贴壁细胞转染还是有很大不同的。
脂质体转染的原理基于电荷吸引原理,先形成脂质体-DNA复合物,散布在细胞周围,然后通过细胞的内吞作用,将目的基因导入细胞内,而脂质体复合物与贴壁细胞的接触机会比悬浮细胞高出很多倍,所以,脂质体转染时悬浮细胞的转染效率要明显低于贴壁细胞。
我们实验室转染悬浮细胞是用的电穿孔法,目前为止,悬浮细胞转染的最好方法还是电转,我们实验室用的电转仪是Bio-Rad的,使用条件是电压250V,电容975uF,效果不错,不妨一用。
暂无品牌问答