请使用支持JavaScript的浏览器! +,Methoxy PEG Succinimidyl Carboxymethyl Ester from JenKem Technology. Methoxy SCM PEG. Linear methoxy NHS PEG.
热门关键词
购物车中还没有商品,赶紧选购吧!
JenKemUSA/Methoxy PEG Succinimidyl Carboxymethyl Ester/A3016-1\/M-SCM-10K,1g
  • JenKemUSA/Methoxy PEG Succinimidyl Carboxymethyl Ester/A3016-1\/M-SCM-10K,1g

 

货号 A3016-1\/M-SCM-10K,1g
美元价 *** 价格说明
市场价 ¥2200.00
登录认证,可享受会员价
数量 - +
提醒:无质量问题不接受退换货,下单前请仔细核对信息。
下单后请及时联系客服核对商品价格,订单生效后再付款。

请勾选您需要的价格类型!

Description

Methoxy PEG Succinimidyl Carboxymethyl Ester for amine PEGylation, with superior quality specification of ≥95% Substitution.

JenKem Technology’s Methoxy PEG Succinimidyl Carboxymethyl Ester (Methoxy PEG NHS or Methoxy PEG SCM) is a high quality amine reactive PEG product with a stable non-degradable linker between the PEG polymeric chain and the NHS ester. Methoxy PEG Succinimidyl Carboxymethyl Ester reacts with the amine group of lysine(s) at room temperature in less than 1hr at pH 7-8. Shorter hydrolysis half life of M-PEG-SCM ensures maximum selectivity towards most sterically available amine groups.

JenKem Technology offers Methoxy PEG SCM Ester with MW 2kDa (M-SCM-2000), MW 3kDa (M-SCM-3000), MW 5kDa (M-SCM-5000), MW 10kDa (M-SCM-10K), MW 20kDa (M-SCM-20K), MW 30 kDa (M-SCM-30K), MW 35 kDa (M-SCM-35K) and MW 40kDa (M-SCM-40K), in 1g and 10g packing sizes. Different MW of Methoxy PEG SCM Ester products may be available by custom synthesis, please email us at tech@jenkemusa.com for details on custom PEGs. Other linear NHS esters are available – please select other stable linker NHS PEGs, or cleavable linker NHS PEGs. JenKem Technology provides repackaging services for an additional fee, please contact us if you require a different package size than our catalog selection.

Bulk PEGs and GMP grade PEGs are made-to-order. Please contact us for bulk pricing.

Click here to download the MSDS

References:

  1. Wan, W., et al., Doxorubicin and siRNA-PD-L1 co-delivery with T7 modified ROS-sensitive nanoparticles for tumor chemoimmunotherapy, International Journal of Pharmaceutics, 2019, 566, p. 731-744.
  2. Salarian, M., et al., Precision detection of liver metastasis by collagen-targeted protein MRI contrast agent, Biomaterials, 2019, 224.
  3. Bisso, S., et al., Dual delivery of nucleic acids and PEGylated-bisphosphonates via calcium phosphate nanoparticles, European Journal of Pharmaceutics and Biopharmaceutics, 2019.
  4. Moussa, A., et al., Reducing-end “clickable” functionalizations of chitosan oligomers for the synthesis of chitosan-based diblock copolymers, Carbohydrate Polymers, 2019, V. 219, P. 387-394.
  5. Rajkumar, S., et al., Multi-functional core-shell Fe3O4@Au nanoparticles for cancer diagnosis and therapy, Colloids and Surfaces B: Biointerfaces, 2019, V. 174, P. 252-259.
  6. Rompicharla, S.V., et al., Biotin functionalized PEGylated poly (amidoamine) dendrimer conjugate for active targeting of paclitaxel in cancer, International journal of pharmaceutics, 2019, 557:329-41.
  7. Feng, J., et al., Dendritic Polylysine Based ανβ3 Integrin Targeted Probe for Near-infrared Fluorescent Imaging of Glioma, Colloids and Surfaces B: Biointerfaces, 2019.
  8. Han, S., et al., A novel synergetic targeting strategy for glioma therapy employing borneol combination with angiopep-2-modified, DOX-loaded PAMAM dendrimer, Journal of drug targeting, 2018, 26(1), pp.86-94.
  9. Hu, Q., et al., Chondrocyte affinity peptide modified PAMAM conjugate as a nanoplatform for targeting and retention in cartilage, Nanomedicine, 2018, 13(7), pp.749-767.
  10. Li, H., et al., Dendron‐Grafted Polylysine‐Based Dual‐Modal Nanoprobe for Ultra‐Early Diagnosis of Pancreatic Precancerosis via Targeting a Urokinase‐Type Plasminogen Activator Receptor, Advanced healthcare materials, 2018, 7(5), p.1700912.
  11. Zhang, L., et al., In vivo tumor active cancer targeting and CT-fluorescence dual-modal imaging with nanoprobe based on gold nanorods and InP/ZnS quantum dots, Journal of Materials Chemistry B, 2018.
  12. Badkas, A., et al., Modulation of in vitro phagocytic uptake and immunogenicity potential of modified Herceptin®-conjugated PLGA-PEG nanoparticles for drug delivery, Colloids and Surfaces B: Biointerfaces, 2018, V. 162, P. 271-278.
  13. Rajkumar, S., et al., Multi-functional nanocarriers based on iron oxide nanoparticles conjugated with doxorubicin, poly(ethylene glycol) and folic acid as theranostics for cancer therapy, Colloids and Surfaces B: Biointerfaces, 2018, V. 170, P. 529-537.
  14. Pan, H.M., et al., Engineering and Design of Polymeric Shells: Inwards Interweaving Polymers as Multilayer Nanofilm, Immobilization Matrix or Chromatography Resins. ACS Applied Materials & Interfaces, 2017.
  15. Liu, C., et al., iRGD-mediated core-shell nanoparticles loading carmustine and O6-benzylguanine for glioma therapy, Journal of Drug Targeting, 2017, 25(3):235-46.
  16. Gao, W., et al., Transferrin receptor-targeted pH-sensitive micellar system for diminution of drug resistance and targetable delivery in multidrug-resistant breast cancer, International Journal of Nanomedicine, 2017, 12:1047.
  17. Yang, C., et al., Effects of PEGylation on biomimetic synthesis of magnetoferritin nanoparticles, Journal of Nanoparticle Research, 2017, 19(3):101.
  18. Jiang, G., et al., Formulation of temozolomide-loaded nanoparticles and their targeting potential to melanoma cells, Oncology reports, 2017, 37(2):995-1001.
  19. Han, S., et al., A Novel Synergetic Targeting Strategy for Glioma Therapy Employing Borneol Combination with Angiopep-2-modified, DOX-loaded PAMAM Dendrimer, Journal of Drug Targeting, 2017, 1-20.
  20. Xu, L., et al., Oxidized catechol-derived poly (ethylene glycol) for thiol-specific conjugation. Reactive and Functional Polymers, 2017.
  21. Yu, Y., et al., A new NIR-triggered DOX and ICG co-delivery system for enhanced multidrug resistant cancer treatment through simultaneous chemo/photothermal/photodynamic therapy, Acta Biomaterialia, 2017.
  22. Ye, J., et al., High-Yield Synthesis of Monomeric LMWP (CPP)-siRNA Covalent Conjugate for Effective Cytosolic Delivery of siRNA, Theranostics, 2017, 7(9), 2495-2508
  23. Yuan, Z., et al., Multifunctional nanoparticles co-delivering EZH2 siRNA and etoposide for synergistic therapy of orthotopic non-small-cell lung tumor, Journal of Controlled Release, 2017, v. 268, P. 198-211.
  24. Alejo-Gonzalez, K., et al., PEGylation of cytochrome P450 enhances its biocatalytic performance for pesticide transformation, International Journal of Biological Macromolecules, 2017, v. 105:1, P. 163-170.
  25. Henley, W. H., et al., High resolution separations of charge variants and disulfide isomers of monoclonal antibodies and antibody drug conjugates using ultra-high voltage capillary electrophoresis with high electric field strength, Journal of Chromatography A, 2017, V. 1523, P. 72-79.
  26. Yu, Y., et al., A new NIR-triggered doxorubicin and photosensitizer indocyanine green co-delivery system for enhanced multidrug resistant cancer treatment through simultaneous chemo/photothermal/photodynamic therapy, Acta Biomaterialia, 2017, V. 59, P. 170-180.
  27. Cao, X., et al., Modulating the Cellular Immune Response of Oligonucleotides by Brush Polymer‐Assisted Compaction, Small, 2017, 13(43).
  28. Xu, Z., et al., A poly(amidoamine) dendrimer-based nanocarrier conjugated with Angiopep-2 for dual-targeting function in treating glioma cells, Polym. Chem., 2016, 7, 715-721.
  29. Dasargyri, A., et al., Findings questioning the involvement of Sigma-1 receptor in the uptake of anisamide-decorated particles, Journal of Controlled Release, 2016.
  30. Son, Y.J., et al., Electrospun Nanofibrous Sheets for Selective Cell Capturing in Continuous Flow in Microchannels, Biomacromolecules, 2016.
  31. Kumar, A.T., et al., Substrate-based near-infrared imaging sensors enable fluorescence lifetime contrast via built-in dynamic fluorescence quenching elements. ACS Sensors, 2016.
  32. Wang, W., et al., Doxorubicin-loaded pH-sensitive polymeric blends for synergistic cancer treatment, RSC Adv., 2016, 6, 31167-31176.
  33. Zhou, F., et al., Targeted delivery of microRNA-126 to vascular endothelial cells via REDV peptide modified PEG-trimethyl chitosan. Biomaterials science, 2016, 4(5):849-56.
  34. Li, F., et al., Non-invasively differentiating extent of liver fibrosis by visualizing hepatic integrin αvβ3 expression with an MRI modality in mice, Biomaterials, 2016, 102:162-74.
  35. Gao, X., et al., Nanoagonist-mediated endothelial tight junction opening: A strategy for safely increasing brain drug delivery in mice, Journal of Cerebral Blood Flow & Metabolism, 2016.
  36. Wu, D., et al., Phenylboronic acid-functionalized polyamidoamine-mediated Bcl-2 siRNA delivery for inhibiting the cell proliferation, Colloids and Surfaces B: Biointerfaces, 2016, 146:318-25.
  37. Rasson, A.S., et al., Filament Assembly by Spire: Key Residues and Concerted Actin Binding, Journal of Molecular Biology, 2015, 427 (4),  p: 824-839.
  38. Jiao, Y., et al., Functionalized Hollow Mesoporous Silica Nanoparticles‐Based Controlled Dual‐Drug Delivery System for Improved Tumor Cell Cytotoxicity, Particle & Particle Systems Characterization, 2015, 32(2): 222-233.
  39. Oztug Durer, Z.A., et al., Metavinculin Tunes the Flexibility and the Architecture of Vinculin-Induced Bundles of Actin Filaments, Journal of Molecular Biology, 2015, 427:17, P. 2782-2798.
  40. Schmid, E.M., et al., Chapter 17 – Reconstitution of proteins on electroformed giant unilamellar vesicles, In: Methods in Cell Biology, Academic Press, 2015, 128, P. 319-338.
  41. Morry, J., et al., Dermal delivery of HSP47 siRNA with NOX4-modulating mesoporous silica-based nanoparticles for treating fibrosis, Biomaterials, 2015, 66.
  42. Fu, H., et al., Tumor‐Targeted Paclitaxel Delivery and Enhanced Penetration Using TAT ‐Decorated Liposomes Comprising Redox‐Responsive Poly(Ethylene Glycol), Journal of Pharmaceutical Science, 2015, 104(3), 1160-1173.
  43. McLeod, V. M., et al., Optimal PEGylation can Improve the Exposure of Interferon in the Lungs Following Pulmonary Administration, Journal of Pharmaceutical Sciences, 2015, 104(4), 1421-1430.
  44. Cheng, L., et al., Construction and evaluation of PAMAM–DOX conjugates with superior tumor recognition and intracellular acid-triggered drug release properties, Colloids and Surfaces B: Biointerfaces, 2015, 136, P. 37-45.
  45. Zheng, S., et al., Salvaging brain ischemia by increasing neuroprotectant uptake via nanoagonist mediated blood brain barrier permeability enhancement, Biomaterials, 2015, 66, P. 9-20.
  46. Paez, J.I., et al., Gauging and Tuning Cross-Linking Kinetics of Catechol-PEG Adhesives via Catecholamine Functionalization, Biomacromolecules, 2015, 16 (12), 3811-3818.
  47. Senanayake, T. H., et al., Nanogel-Conjugated Reverse Transcriptase Inhibitors and Their Combinations as Novel Antiviral Agents with Increased Efficacy against HIV-1 Infection, Molecular Pharmaceutics, 2015, 12 (12), 4226
  48. Yu, H., et al., Enzyme sensitive, surface engineered nanoparticles for enhanced delivery of camptothecin, Journal of Controlled Release, 2015, 216, P. 111-120.
  49. Zirbs, R., et al., Melt-grafting for the synthesis of core–shell nanoparticles with ultra-high dispersant density, Nanoscale, 2015, 7, 11216-11225.
  50. Chan, L.J., et al., PEGylation Does Not Significantly Change the Initial Intravenous or Subcutaneous Pharmacokinetics or Lymphatic Exposure of Trastuzumab in Rats but Increases Plasma Clearance after Subcutaneous Administration, Molecular Pharmaceutics, 2015, 12 (3), 794-809.
  51. Crouzier, T., et al., Modulating Mucin Hydration and Lubrication by Deglycosylation and Polyethylene Glycol Binding. Adv. Mater. Interfaces, 2015, 2.
  52. Wang, K., et al., Development of biodegradable polymeric implants of RGD-modified PEG-PAMAM-DOX conjugates for long-term intratumoral release, Drug Delivery, 2015, 22:3.
  53. Nannan, L., et al., Antitumor and antimetastatic effects of pemetrexed-loaded targeted nanoparticles in B16 bearing mice, Drug delivery, 2015, 1-9.
  54. Fahrländer E., et al., PEGylated human serum albumin (HSA) nanoparticles: preparation, characterization and quantification of the PEGylation extent, Nanotechnology, 2015, 26(14), 145103.
  55. Zhao, G., et al., Functional PEG–PAMAM-Tetraphosphonate Capped NaLnF4 Nanoparticles and their Colloidal Stability in Phosphate Buffer. Langmuir, 2014, 30(23): p. 6980-6989.
  56. Petek, N.A. and R.D. Mullins, Chapter Two – Bacterial Actin-Like Proteins: Purification and Characterization of Self-Assembly Properties, in Methods in Enzymology, D.V. Ronald, Editor., 2014, p. 19-34.
  57. Hu, W., et al., Redox and pH-responsive poly (amidoamine) dendrimer-poly (ethylene glycol) conjugates with disulfide linkages for efficient intracellular drug release, Colloids Surf B Biointerfaces, 2014, 123, p:254-63.
  58. Liu, S., et al., NIR initiated and pH sensitive single-wall carbon nanotubes for doxorubicin intracellular delivery, J. Mater. Chem. B, 2014, 2, 1125.
  59. Gonzalez, A. L., et al., Integrin-driven monocyte to dendritic cell conversion in modified extracorporeal photochemotherapy, Clin Exp Immunol, 2014, 175(3): 449-457.
  60. Chen, J., et al., A Facile Strategy for In Situ Controlled Delivery of Doxorubicin with a pH-Sensitive Injectable Hydrogel, Nano LIFE, 2014, 04:03.
  61. Wang, K., et al., Tumor penetrability and anti-angiogenesis using iRGD-mediated delivery of doxorubicin-polymer conjugates, Biomaterials, 2014, 35:30, p. 8735-8747.
  62. Qin, L., et al., A dual‑targeting liposome conjugated with transferrin and arginine‑glycine‑aspartic acid peptide for glioma‑targeting therapy, Oncology Letters, 2014, 8, 2000-2006.
  63. Yuan, W., et al., Increased Delivery of Doxorubicin Into Tumor Cells Using Extracellularly Activated TAT Functionalized Liposomes: In Vitro and In Vivo Study, Journal of Biomedical Nanotechnology, 2014, 10:8, p. 1563-1573(11).
  64. Zhou. J., et al., Enhanced and selective delivery of enzyme therapy to 9L-glioma tumor via magnetic targeting of PEG-modified, β-glucosidase-conjugated iron oxide nanoparticles, International Journal of Nanomedicine, 2014, 9:2905-2917.
  65. Saville, S. L., et al., The formation of linear aggregates in magnetic hyperthermia: Implications on specific absorption rate and magnetic anisotropy, Journal of Colloid and Interface Science, 2014, 424, P. 141-151.
  66. Kong, X., et al., A novel multifunctional poly(amidoamine) dendrimeric delivery system with superior encapsulation capacity for targeted delivery of the chemotherapy drug 10-hydroxycamptothecin. International Journal of Pharmaceutics, 2014, 465(1–2), p. 378-387.
  67. Si, Z., et al., pH-responsive near-infrared nanoprobe imaging metastases by sensing acidic microenvironment, RSC Adv., 2014, 4, 55548-55555.
  68. Mei, L., et al., Increased tumor targeted delivery using a multistage liposome system functionalized with RGD, TAT and cleavable PEG. International Journal of Pharmaceutics, 2014, 468(1–2), p. 26-38.
  69. Tang, J., et al., Liposomes co-modified with cholesterol anchored cleavable PEG and octaarginines for tumor targeted drug delivery, Journal of Drug Targeting, 2014, 22:4.
  70. Zheng, S., et al., Multimodal Nanoprobes Evaluating Physiological Pore Size of Brain Vasculatures in Ischemic Stroke Models. Advanced Healthcare Materials, 2014, 3: 1909–1918.
  71. Gao, X., et al., Overcoming the blood–brain barrier for delivering drugs into the brain by using adenosine receptor nanoagonist. ACS nano, 2014, 8(4):3678-89.
  72. Wang, Q., et al., Comparative studies of salinomycin-loaded nanoparticles prepared by nanoprecipitation and single emulsion method, Nanoscale Research Letters, 2014, 9:351.
  73. Haiou Qu, et al., Controllable in Situ Synthesis of Magnetite Coated Silica-Core Water-Dispersible Hybrid Nanomaterials, Langmuir, 2013, 29(33) p: 10573–10578.
  74. Malik, R., et al., A single-layer peptide nanofiber for enhancing the cytotoxicity of trastuzumab (anti-HER), Journal of Nanoparticle Research, 2013, 15:1682.
  75. Giger, E. V., et al., siRNA transfection with calcium phosphate nanoparticles stabilized with PEGylated chelators, Adv Healthc Mater, 2013, 2(1): 134-144.
  76. Hansen, S.D, et al., Cytoplasmic actin: purification and single molecule assembly assays, InAdhesion Protein Protocols, 2013, p. 145-170.
  77. Gao, X., et al., Up-regulating blood brain barrier permeability of nanoparticles via multivalent effect, Pharmaceutical research, 2013, 30.10 : 2538-2548.
  78. Lei, Y., et al. Glutathione-sensitive RGD-poly(ethylene glycol)-SS-polyethylenimine for intracranial glioblastoma targeted gene delivery. J. Gene Med., 2013, 15: 291–305.
  79. Sabar, M. F., et al., Synthesis and Bioactivity Study of 30KDa Linear PEG-Interferon and its Comparison with Tri-Branched PEG-Interferon. J. Chem. Soc., 2013, 35.1: 119.
  80. Ran, R., et al., Enhanced tumor accumulation and cellular uptake of liposomes modified with ether-bond linked cholesterol derivatives, Die Pharmazie-An International Journal of Pharmaceutical Sciences, 2013, 68.8 : 668-674.
  81. Scott, M.A., Ultra-rapid 2-D and 3-D laser microprinting of proteins. Diss. Massachusetts Institute of Technology, 2013.
  82. Sun, C., et al., Bifunctional PEGylated exenatide-amylinomimetic hybrids to treat metabolic disorders: an example of long-acting dual hormonal therapeutics, Journal of medicinal chemistry, 2013, 56.22 : 9328-9341.
  83. Li, R., et al., Intelligently Targeted Drug Delivery and Enhanced Antitumor Effect by Gelatinase-Responsive Nanoparticles. PLoS ONE, 2013, 8(7): e69643.
  84. Keefe, A.J., et al., Poly(zwitterionic)protein conjugates offer increased stability without sacrificing binding affinity or bioactivity, Nature Chemistry, 2012, 4, p: 59–63.
  85. Lee, G., et al., Real-Time Quantitative Monitoring of Specific Peptide Cleavage by a Proteinase for Cancer Diagnosis, Angew. Chem. Int. Ed., 2012, 51, 5837 –5841.
  86. Huang, G., et al., Dextran based pH-sensitive near-infrared nanoprobe for in vivo differential-absorption dual-wavelength photoacoustic imaging of tumors, J. Mater. Chem., 2012, 22, 22575.
  87. Doronin, K., et al., Construction of Targeted and Armed Oncolytic Adenoviruses, Methods in Molecular Biology, Oncolytic Viruses, 2012, 797.
  88. Qin, L., et al., Gelatinase-stimuli strategy enhances the tumor delivery and therapeutic efficacy of docetaxel-loaded poly (ethylene glycol)-poly (varepsilon-caprolactone) nanoparticles, Int J Nanomedicine 7, 2012, 281-295.
  89. Gillich, T., et al., Self-Assembly of Focal Point Oligo-catechol Ethylene Glycol Dendrons on Titanium Oxide Surfaces: Adsorption Kinetics, Surface Characterization, and Nonfouling Properties, J.A.C.S., 2011, 133(28), p: 10940–10950.
  90. Wang, Y.Y., et al., Introducing RGD Peptides on PHBV Films through PEG-Containing Cross-Linkers to Improve the Biocompatibility, Biomacromolecules, 2011, 12(3), p: 551–559.
  91. Soontornworajit, B., et al., Affinity hydrogels for controlled protein release using nucleic acid aptamers and complementary oligonucleotides, Biomaterials, 2011, 32(28): 6839-6849.
  92. Zhang, L., et al., RGD-modified PEG–PAMAM–DOX conjugates: In vitro and in vivo studies for glioma, European Journal of Pharmaceutics and Biopharmaceutics, 2011, 79:2, P. 232-240.
  93. Lu, Z-X, et al., Development of small interfering RNA delivery system using PEI-PEG-APRPG polymer for antiangiogenic vascular endothelial growth factor tumor-targeted therapy, International Journal of Nanomedicine, 2011, 6:1661-1673.
  94. Kuai, R., et al., Targeted Delivery of Cargoes into a Murine Solid Tumor by a Cell-Penetrating Peptide and Cleavable Poly(ethylene glycol) Comodified Liposomal Delivery System via Systemic Administration, Mol. Pharmaceutics, 2011, 8(6), p: 2151–2161.
  95. Chen, H., et al., High-level production of uricase containing keto functional groups for site-specific PEGylation, Biochemical Engineering Journal, 2011, 58–59, p. 25-32.
  96. Zhu, S., et al., PEGylated PAMAM Dendrimer-Doxorubicin Conjugates: In Vitro Evaluation and In Vivo Tumor Accumulation, Pharmaceutical Research, 2010, 27:1, p. 161-174.
  97. Georgianna, W.E., et al., Photocleavable Polyethylene Glycol for the Light-Regulation of Protein Function, Bioconjugate Chem., 2010, 21(8) p: 1404–1407.
  98. Zhu, S., et al., Partly PEGylated polyamidoamine dendrimer for tumor-selective targeting of doxorubicin: the effects of PEGylation degree and drug conjugation style, Biomaterials, 2010, 31(6):1360-71.
  99. Huang, R., et al., Evaluation and mechanism studies of PEGylated dendrigraft poly-L-lysines as novel gene delivery vectors, Nanotechnology, 2010, 21:26.
  100. Kuai, R., et al., Efficient Delivery of Payload into Tumor Cells in a Controlled Manner by TAT and Thiolytic Cleavable PEG Co-Modified Liposomes, Molecular Pharmaceutics, 2010, 7 (5), 1816-1826.
  101. Liu, Q., et al., Targeted delivery of miR-200c/DOC to inhibit cancer stem cells and cancer cells by the gelatinases-stimuli nanoparticles, Biomaterials, 2013, 34:29, p. 7191-7203.
  102. Zhang, H., et al., Efficient Transfection of Blood−Brain Barrier Endothelial Cells by Lipoplexes and Polyplexes in the Presence of Nuclear Targeting NLS-PEG-Acridine Conjugates, Bioconjugate Chemistry, 2009, 20(1), 120-128.
  103. Doronin, K., et al., Chemical Modification with High Molecular Weight Polyethylene Glycol Reduces Transduction of Hepatocytes and Increases Efficacy of Intravenously Delivered Oncolytic Adenovirus, Human Gene Therapy, 2009, 20(9): 975-988.
  104. Zhang, H., et al., Efficient Nuclear Targeting by NLS-PEG-Acridine Conjugates in the Transfection of Blood-Brain Barrier Endothelial Cells with Lipoplexes and Polyplexes, Bioconjugate chemistry, 2009, 20(1):120-128.
  105. Cao, J., et al., Quantitative determination of pegylated consensus interferon in rhesus monkey serum using a competitive enzyme-linked immunosorbent assay, Immunopharmacology and Immunotoxicology, 2009, 31:4.
  106. Ochs, C.J., et al., Low-Fouling, Biofunctionalized, and Biodegradable Click Capsules, Biomacromolecules, 2008, 9(12), p: 3389–3396.
  107. Weaver, E.A., et al., Effects of Shielding Adenoviral Vectors with Polyethylene Glycol on Vector-Specific and Vaccine-Mediated Immune Responses, Human Gene Therapy, 2008, 19:1369–1382.
  108. Hofherr, S.E., et al., Modification of Adenoviral Vectors With Polyethylene Glycol Modulates In Vivo Tissue Tropism and Gene Expression, Molecular Therapy, 2008, 16 7.

Founded in 2001 by experts in PEG synthesis and PEGylation, JenKem Technology specializes exclusively in the development and manufacturing of high quality polyethylene glycol (PEG) products and derivatives, and related custom synthesis and PEGylation services. JenKem Technology is ISO 9001 and ISO 13485 certified, and adheres to ICH Q7A guidelines for GMP manufacture. The production of JenKem® PEGs is back-integrated to in-house polymerization directly from ethylene oxide, enabling facile traceability for regulated customers. JenKem Technology caters to the PEGylation needs of the pharmaceutical, biotechnology, medical device and diagnostics, and emerging chemical specialty markets, from laboratory scale through large commercial scale.

售后保障
蚂蚁淘电商平台
ebiomall.com
公司介绍
公 司 简 介
蚂蚁淘(www.ebiomall.com)是中国大陆目前唯一的生物医疗科研用品B2B跨境交易平台, 该平台由多位经验丰富的生物人和IT人负责运营。蚂蚁淘B2B模式是指客户有采购意向后在蚂蚁 淘搜索全球供应信息,找到合适的产品后在蚂蚁淘下单,然后蚂蚁淘的海外买手进行跨境采购、 运输到中国口岸,最后由蚂蚁淘国内团队报关运输给客户...
蚂 蚁 淘 承 诺
正品保证: 全球直采 在线追溯

蚂蚁淘所有产品都是自运营的,我们已经跟国外多家厂方建立品牌推广合作关系, 获得对方的支持和授权; 同时客户可以通过订单详情查看到货物从厂方至客户的所有流程, 确保货物的来源; 正规报关,提供13%增值税发票。

及时交付: 限时必达 畅选无忧

蚂蚁淘的运营团队都是有着多年经验的成员,他们熟悉海外采购、仓储物流、报关等环节; 同时通过在线的流程监控,蚂蚁淘的进口速度比传统企业提高了50%以上, 部分产品甚至能做到7-10天到货,即蚂蚁淘的“时必达”服务。

轻松采购: 在线下单 简单省事

蚂蚁淘的价格是真实透明的,并且具有很大的价格优势,不需要繁杂的询价比价; 报价单与合同可以直接在线生成或打印;就像在京东购物一样, 您的鼠标点击几 次即完成在蚂蚁淘的采购,订单详情会告诉您所有进程。

售后申请: 耐心讲解 优质服务

蚂蚁淘提供的产品在使用过程中如因产品质量问题有售后需求时, 您可通过我的订单提交您的“申请售后”, 蚂蚁淘产品顾问会第一时间为您处理, 在售后服务过程中如遇到问题也可致电蚂蚁淘客服热线:4000-520-616。

相关文章
  • 乙醇(Ethanol)俗称酒精,是一种有机物,结构简式CH₃CH₂OH或C₂H₅OH,分子式C₂H₆O,是最常见的一元醇。乙醇在常温常压下是一种易燃、易挥发的无色透明液体,低毒性,纯液体不可直接饮用;具有特殊香味,并略带刺激;微甘,并伴有刺激的辛辣滋味。易燃, 查看更多>

  • 高级醇又称高级脂肪醇,指含有六个碳原子以上一元醇的混合物。通常把C6~C10范围的醇称为增塑剂醇,而把C12以上的醇称为洗涤剂醇。中文名高级醇外文名higheralcohols又称高级脂肪醇定义含有六个碳原子以上一元醇混合物原料植物油,石油提炼方法皂化法,阿尔福 查看更多>

  • 又称氢氧基,由氢和氧两种原子组成的一价原子团(-OH)。此原子团在有机化合物中称为羟基,是醇(ROH)、酚(ArOH)等分子中的官能团;在无机化合物水溶液中以带负电荷的离子形式存在(OH-1),称为氢氧根。当羟基与苯环相连时,可使苯环致活,显弱酸性。 查看更多>

  • 一般指1-十六烷醇。中文名十六醇外文名hexadecanolCASNo.36653-82-4分子式C16H34O目录1基本信息2理化性质3主要用途4危害危险十六醇基本信息中文名称2:棕榈醇英文名称2:1-hexadecanol,Cetylalcohol分子量:242.50结构式:分子式:C16H34O(CH3CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2OH) 查看更多>

  • 实验方法原理细胞融合的诱导物种类很多.常用的主要有灭活的仙台病毒(Sendaivirus),聚乙二醇(Polyethyleneglycol,PEG)和电脉冲。目前应用最广泛的是聚乙二醇,因为它易得、简便,且融合效果稳定。PEG的促融机制尚不完全清楚,它可能引起细胞膜中磷脂的酰键及极性 查看更多>

  • 实验方法原理在液氮中研磨植物材料,使部分细胞破碎,进一步使植物细胞在裂解液中裂解,用醋酸钠和氯仿沉淀蛋白质,异丙醇沉淀核酸,溶解后经氯化锂沉淀总RNA,洗涤后得到高质量的RNA。本实验旨在了解和掌握植物总RNA的分离和纯化方法。实验材料植物RNA试剂、试剂 查看更多>

  • BackgroundZebrafish,Brachydaniorerio,haveadistinctembryonicdevelopment.Theembryogoesthroughaprocesscalledepiboly.Epiboly,asdefinedinthesixtheditionofDevelopmentalBIOLOGy(Gilbert2000),isthemovementofepithelialsheets(usuallyoftheectodermcells)thatspreadasaunit,ratherthanindividually,toenclosethedeeperlayersoftheembryo.Epibolyenablesanembryotoprotectt 查看更多>

  • ObjectiveTheobjectiveoftheexperimentistodeterminetheeffectsofethanolexposureontheembryonicdevelopmentofzebrafishthroughobservationofphysicaldefomities.IntroductionEmbryonicdevelopmentofzebrafish,Danioreriro,isaffectedbyethanolinamannersimilartohighervertebrates(BladerandSträhle,1998).Therefore,investigatingtheeffectsofethanolonzebrafishembryom 查看更多>

  • Introduction:Theearlystagesofzebrafish,Danioreriodevelopmentarecharacterizedbymeroblasticdicoidalcleavage.Initiallycelldivisiononlyoccursintheblastodisc,whichisathinregionontheanimalcapoftheegg.Thisblasotdisccontainsalloftheegg"scytoplasmandorganelles,therestoftheeggisfilledwithyolk.Afterabout10celldivisionsthemidblastulatransitionbeginsandthecells 查看更多>

  • 产品名称:人乙醇脱氢酶ELISA国内优质ELISA厂家产品简介:人乙醇脱氢酶elisa国内优质ELISA厂家ELISA试剂盒国产现货SIXIN生产的优质ELISA试剂盒直供全国。http://www.AATbio.com.cn/elisa/人乙醇脱氢酶elisa国内优质ELISA厂家进口试剂采购网,上海通善生物科技有限公司(BioLeaf)旗 查看更多>

  • 产品名称:人乙醇脱氢酶试剂盒国内优质ELISA厂家产品简介:人乙醇脱氢酶试剂盒国内优质ELISA厂家ELISA试剂盒国产现货SIXIN生产的优质ELISA试剂盒直供全国。http://www.AATbio.com.cn/elisa/人乙醇脱氢酶试剂盒国内优质ELISA厂家进口试剂采购网,上海通善生物科技有限公司(B 查看更多>

  • 产品名称:人乙醇脱氢酶(ADH)ELISAKit(elisa试剂盒)国内优质ELISA厂家产品简介:人乙醇脱氢酶(ADH)ELISAKit(ELISA试剂盒)国内优质ELISA厂家ELISA试剂盒国产现货SIXIN生产的优质ELISA试剂盒直供全国。http://www.AATbio.com.cn/elisa/人乙醇脱氢酶(ADH)ELISAKit(elisa试剂盒)国内优质ELI 查看更多>

常见问题
  • 蚂蚁淘所售产品均为正品吗?
    蚂蚁淘的创始人兼CEO是钟定松先生,具有十年的从业经验,在业界享有良好的口碑; Ebiomall是跨境直采平台,我们直接从厂家采购,自己的团队负责国际物流和清关,中间没有第三方,蚂蚁淘承诺所售产品仅为正品,假一罚十。
  • 下单后可以修改订单吗?
    未确认状态的订单可以修改,打开“订单详情”页面,点击右上角的“修改订单”即可,若已审核确定,则订单无法修改。
  • 商品几天可以发货?
    现货产品付款审核后即可发货,大部分期货产品在3周左右即可到货,提供时必达服务的产品订单审核十天内即可发货。
  • 订单如何取消?
    如订单处于未确定状态,进入“我的订单"页面,找到要取消的订单,点击“取消订单”按钮。
  • 可以开发票吗?
    本网站所售商品都是正规清关,均开具13%正规发票,发票金额含配送费金额,另有说明的除外。
  • 如何联系商家?
    蚂蚁淘任何页面都有在线咨询功能,点击“联系客服”、“咨询”或“在线咨询”按钮,均可咨询蚂蚁淘在线客服人员, 或拨打4000-520-616,除此之外客户可在 联系我们页面找到更多的联系方式。
  • 收到的商品少了/发错了怎么办?
    同个订单购买多个商品可能会分为一个以上包裹发出,可能不会同时送达,建议查看订单详情是否是部分发货状态;如未收到,可联系在线客服或者致电4000-520-616。
  • 退换货/维修需要多长时间?
    一般情况下,退货处理周期为客户收到产品一个月内(以快递公司显示签收时间为准),包装规格、数量、品种不符,外观毁损、短缺或缺陷,请在收到货24小时内申请退换货;特殊商品以合同条款为准。
商品咨询 我要咨询
  • 甲磺酸与低级醇形成的甲磺酸烷基酯,具有潜在基因毒性。那么,几个碳的低级醇形成的甲磺酸烷基酯按照基因毒性杂质控制?(C<5?)上述结构化合物是否也需按照基因毒性杂质进行研究?若是,按照此类杂质总和小于TTC(1.5ug/天)来控制,是否合适?PS:一起
    xuewujx 2017-06-10
  • 布拉格的黄昏 2017-09-25
    醇溶性浸出物测定法中(热浸法)(1)精密称取供试品,并精密加45%的乙醇后静置1小时,静置时不需要指定条件吗?直接在室温下静置吗?(二)连接回流冷凝管时,冷凝管连接水不会对浸出物造成影响吗?请求大神指点,不胜感激!
    峰忆 2017-10-07
  • 各位大神,我现在刚把水提的多糖去蛋白去色素,接下来想醇沉分离,我打算10%、20%、30%········90%乙醇浓度分级醇沉,然后将分级得到的沉淀过凝胶柱。不知道各位在分离多糖时有什么心得,一起交流一下好吗?
    甾体糖苷 2017-07-12
  • 本人目前在做一个中药提取方法的研究,水提醇沉,醇沉浓度分别为50%、60%和70%,检验结果,得率分别为21.99%、23.85%和25.55%,但含量分别是33.48mg/g、16.60mg/g和19.42mg/g。理论上是醇沉浓度越高,去除的杂质越多,得率越低吗?含量是不是也应该是醇沉浓度越高含...   显示更多
    本人目前在做一个中药提取方法的研究,水提醇沉,醇沉浓度分别为50%、60%和70%,检验结果,得率分别为21.99%、23.85%和25.55%,但含量分别是33.48mg/g、16.60mg/g和19.42mg/g。理论上是醇沉浓度越高,去除的杂质越多,得率越低吗?含量是不是也应该是醇沉浓度越高含量越高   收起
    yeltain 2017-07-30
  • 求助战友们:有做过中药醇提取,但是在收醇的时候,当浓缩至醇浓度约20%的时候,有析出现象,析出的还是我的有效成分,怎么才能解决这个问题呢?如果在未析出时停止浓缩,药液太稀,无法干燥呢?问题1:我该如何浓缩定参数?问题2:如果在未析出时放液,
    zjw0378 2017-08-14
  • 儿科小李飞刀 2016-06-10
    小弟有一中药处方,需要水煮醇沉处理,问下具体该怎么做,给我方子的老师去世了告诉我中药先水煮,在用水煮醇沉法外敷治疗给电话我直接问液可以
    儿科小李飞刀 2016-06-13
  • 游客 2017-06-29
    用蛋黄卵磷脂制备的“脂质体”粒径50-60nm,而文献中一般都是100多纳米,现在担心形成的不是脂质体,而是胶束,两者有什么方法可以鉴别吗?
    游客 2017-07-01
  • 我想提取中药中的有效成分,好像目前醇提取的比较多,中药有比如黄柏,桑白皮这些。有谁知道醇提取步骤吗?能不能帮帮忙,万分感激
    梦中梨花惊满天 2016-08-05
  • 各位亲,本人用70%乙醇回流提了中药大概70L,准备旋蒸浓缩但一直没浓缩,室温放了5天,之后要做药理试验的,会不会影响药效?需要重提吗?感谢感谢
    釣者 2017-03-12
  • lhh2015 2017-02-25
    各位老师好,有做环黄芪醇的吗?其对心血管效果怎么样?使用剂量范围是不是很窄,我看文献,有报道,黄芪提取物对血管的作有是双向的,会不会在低剂量时对身体是有害的
    lhh2015 2017-03-01
  • dxy_qax6fd0 2017-06-19
    最近在用醇注入法制备脂质体,用的是蛋黄卵磷脂,在37度水浴搅拌条件下,将含有卵磷脂的醇溶液注入到水相中,但是制备的纳米粒的粒径重现性不好,而且经常出现两个峰,请大神不令赐教,这是怎么回事
    xinghuo816677 2017-06-29
  • 13920663417 2018-01-13
    醛如何变成醇
    SEAL_老A 2018-01-19
  • 醇分子中,连有羟基(-OH)的碳原子必须有相邻的碳原子且与此相邻的碳原子上,并且还必须连有氢原子时,才可发生消去反应。补充:一般使用浓硫酸作催化剂,使醇类脱去羟基生成含双键的有机物。应注意的是醇发生消去反应时的温度控制,温度较低(140℃)时会
    本回答由科学教育分类达人 郑广成推荐 2018-01-22
  • 小豪°2567 2018-01-13
    在工业生产上,除甲醇外,多数常用的简单饱和一元醇是由烯烃做原料生产的,但在石油工业尚未兴起之前,有些醇是靠发酵的方法生产的。1.甲醇最早是用木材干馏法生产甲醇,故甲醇也叫木醇,1920年以后逐渐停止使用这个方法。几乎所有的甲醇均用合成气( synt
    回忆VH5 2018-01-21
  • ahtam118 2018-01-13
    醇水双提法:先提取挥发性成分备用,药渣再与余药加水煎煮,并与蒸馏后药液共制成稠膏或干浸膏粉。完全醇水溶液如长期存放,会出现粘度增加甚至凝胶化的现象,聚合度和粘度越高,储存温度越低,越容易出现这种想象。可以采取以下措施:(1)将聚乙烯醇
    ggkkt 2018-01-14
自营商城图标
自营商城
一手货源 13%专票
正品保障图标
正品保障
全球直采 在线追溯
解放采购图标
解放采购
在线下单 简单省事
及时交付图标
及时交付
限时必达 畅选无忧

版权所有 : ©2005-2020 苏州蚂蚁淘生物科技有限公司 苏CP备17049038号

公司邮箱 : info@ebiomall.com

联系电话 : 4000-520-616

188精品生物网

蚂蚁淘旗下现货平台

© 2005-2020 苏州蚂蚁淘生物科技有限公司 版权所有。 中国 icon_tel Tel: 4000-520-616 icon_email E-mail: info@ebiomall.com 苏ICP备17049038号 苏公网安备 32059002001627号

声明:本网站部分产品受外界条件影响(包含但不限于进口国出口国政策限制等因素),无法提供销售服务,下单后,会由客服人员联系厂家确认后另行通知。 部分危险品无法清关,请勿下单

在线客服
客服电话

4000-520-616

微信交流