产品说明
Overview4-port closed chamber for measurements of NO, O2, H2O2 & other species in cell culture, temperature stabilizedFour port (NOCHM-4) chamber accommodates WPI’s 2 mm sensors for nitric oxide (ISO-NOP), oxygen (ISO-OXY-2), hydrogen peroxide (ISO-HPO-2) and WPI’s KWIK-TIP ion selective electrodes in combination with WPI’s 2 mm Dri-Ref™ reference electrodesTwo additional top ports for injection of reagents using WPI’s MicroFil™ syringe needlesTemperature control through an external circulating bathThe chamber can be used for nitric oxide and other species calibration at temperatures from 4-40 ºCDetailsBenefitsClosed chamber design greatly reduces the surface area of the solution exposed to airOne top port and up to three side ports configuration provides adequate space for convenient sample and electrode manipulationApplicationsSimultaneously measurement of free radicals such as NO, H2O2, H2S, O2 and other ions at controlled conditions for cultured cell, cell suspensions or biological mediaBetter than stirringThe measurement of NO and other reactive gases dissolved in solutions will be underestimated in stirred conditions if the solution is allowed to equilibrate with air. In the case of NO, accelerated decomposition occurs as the result of diffusion of NO from the solution into the gas phase and the reaction of NO with oxygen. This reaction with oxygen makes a significant and variable contribution to NO decomposition, and hence accuracy of measurement, at concentrations of NO between 0.1-5 µM. These problems can now be eliminated with the use of WPI"s two-port NOCHM or four-port NOCHM-4 closed chambers. The chambers consist of a close fitting cap through which a NO probe (ISO-NOP) or other electrode can be inserted. When the probe is in place and the cap is fitted to the chamber the surface area of the solution exposed to air is greatly reduced. Up to three optional side ports are also provided through which an oxygen electrode* (e.g., OXELP), WPI"s hydrogen peroxide, or KWIK-TIP ion selective electrodes in combination with WPI"s 2 mm Dri-Ref™ reference electrodes can be inserted.Temperature controlThe multi-port measurement chambers can be conveniently temperature-controlled by circulating water through the outer sleeve of the chamber using an appropriate heating/cooling circulator bath. The inner volume of the chamber (and hence sample volume) can be continuously adjusted in volume from 1.0 mL to 3.0 mL and is suitable for most cell suspension experiments.ResourcesNOCHM-4 Instruction ManualSpecificationsVolume of Sample1-3 mLSample Injection Ports2 (top)Number of Electrode Ports4Electrode Compatibility: Nitric Oxide ElectrodeISO-NOPElectrode Compatibility: Hydrogen Peroxide ElectrodeISO-HPO-2Electrode Compatibility: Calcium ElectrodeKWIKCAL-2Electrode Compatibility: Hydrogen ElectrodeKWIKH-2Electrode Compatibility: Potassium ElectrodeKWIKPOT -2Electrode Compatibility: TPP (tetraphenylphosphonium) ElectrodeKWIKTPP-2Electrode Compatibility: Dri-Ref ElectrodeDRIREF-2Electrode Compatibility: SUPER-Dri-RefElectrode SDR2Temperature Range of Circulating Water4-40 ºCNotes:Water inlet and outlet require 1/4-in. ID tubingReferencesRobin, E., Derichard, A., Vallet, B., Hassoun, S. M., & Neviere, R. (n.d.). Nitric oxide scavenging modulates mitochondrial dysfunction induced by hypoxia/reoxygenation.Fig. 1 ISO-NO Mark II NO meter electrode connector pin out diagram... - Scientific Figure on ResearchGate. (n.d.). Retrieved from https://www.researchgate.net/figure/24416336_fig1_Fig-1-ISO-NO-Mark-II-NO-meter-electrode-connector-pin-out-diagram-panel-connectorLiu, X., El-Mahdy, M. A., Boslett, J., Varadharaj, S., Hemann, C., Abdelghany, T. M., … Zweier, J. L. (2017). Cytoglobin regulates blood pressure and vascular tone through nitric oxide metabolism in the vascular wall. Nature Communications, 8, 14807. https://doi.org/10.1038/ncomms14807Santos, S. S., Jesus, R. L. C., Simões, L. O., Vasconcelos, W. P., Medeiros, I. A., Veras, R. C., … Silva, D. F. (2017). NO production and potassium channels activation induced by Crotalus durissus cascavella underlie mesenteric artery relaxation. Toxicon, 133, 10–17. https://doi.org/10.1016/j.toxicon.2017.04.010Olson, K. R., Gao, Y., DeLeon, E. R., Arif, M., Arif, F., Arora, N., & Straub, K. D. (2017). Catalase as a sulfide-sulfur oxido-reductase: An ancient (and modern?) regulator of reactive sulfur species (RSS). Redox Biology, 12, 325–339. https://doi.org/10.1016/j.redox.2017.02.021Zhou, D., Hemann, C., Boslett, J., Luo, A., Zweier, J. L., & Liu, X. (2017). Oxygen binding and nitric oxide dioxygenase activity of cytoglobin are altered to different extents by cysteine modification. FEBS Open Bio, 7(6), 845–853. https://doi.org/10.1002/2211-5463.12230DeLeon, E. R., Gao, Y., Huang, E., Arif, M., Arora, N., Divietro, A., … Olson, K. R. (2016). A case of mistaken identity: are reactive oxygen species actually reactive sulfide species? American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 310(7), R549–R560. https://doi.org/10.1152/ajpregu.00455.2015Stephens, R. S., Servinsky, L. E., Rentsendorj, O., Kolb, T. M., Pfeifer, A., & Pearse, D. B. (2014). Protein kinase G increases antioxidant function in lung microvascular endothelial cells by inhibiting the c-Abl tyrosine kinase. American Journal of Physiology-Cell Physiology, 306(6), C559–C569. https://doi.org/10.1152/ajpcell.00375.2012Hemme, D., Veyel, D., Mühlhaus, T., Sommer, F., Jüppner, J., Unger, A.-K., … Schroda, M. (2014). Systems-Wide Analysis of Acclimation Responses to Long-Term Heat Stress and Recovery in the Photosynthetic Model Organism Chlamydomonas reinhardtii. The Plant Cell Online, 26(11), 4270–4297. https://doi.org/10.1105/tpc.114.130997Dantas, B., Ribeiro, T., Assis, V., Furtado, F., Assis, K., Alves, J., … Braga, V. (2014). Vasorelaxation Induced by a New Naphthoquinone-Oxime is Mediated by NO-sGC-cGMP Pathway. Molecules, 19(7), 9773–9785. https://doi.org/10.3390/molecules19079773Dantas, B., Ribeiro, T., Assis, V., Furtado, F., Assis, K., Alves, J., … Braga, V. (2014). Vasorelaxation Induced by a New Naphthoquinone-Oxime is Mediated by NO-sGC-cGMP Pathway. Molecules, 19(7), 9773–9785. https://doi.org/10.3390/molecules19079773Liu, X., Tong, J., Zweier, J. R., Follmer, D., Hemann, C., Ismail, R. S., & Zweier, J. L. (2013). Differences in oxygen-dependent nitric oxide metabolism by cytoglobin and myoglobin account for their differing functional roles. FEBS Journal, 280(15), 3621–3631. https://doi.org/10.1111/febs.12352Anidi, I. U., Servinsky, L. E., Rentsendorj, O., Stephens, R. S., Scott, A. L., & Pearse, D. B. (2013). CD36 and Fyn Kinase Mediate Malaria-Induced Lung Endothelial Barrier Dysfunction in Mice Infected with Plasmodium berghei. PLoS ONE, 8(8), e71010. https://doi.org/10.1371/journal.pone.0071010Liu, X., Follmer, D., Zweier, J. R., Huang, X., Hemann, C., Liu, K., … Zweier, J. L. (2012). Characterization of the Function of Cytoglobin as an Oxygen-Dependent Regulator of Nitric Oxide Concentration. Biochemistry, 51(25), 5072–5082. https://doi.org/10.1021/bi300291hBall, K. A., Nelson, A. W., Foster, D. G., & Poyton, R. O. (2012). Nitric oxide produced by cytochrome c oxidase helps stabilize HIF-1α in hypoxic mammalian cells. Biochemical and Biophysical Research Communications, 420(4), 727–732. https://doi.org/10.1016/j.bbrc.2012.03.050Ball, K. A., Nelson, A. W., Foster, D. G., & Poyton, R. O. (2012). Nitric oxide produced by cytochrome c oxidase helps stabilize HIF-1α in hypoxic mammalian cells. Biochemical and Biophysical Research Communications, 420(4), 727–732. https://doi.org/10.1016/j.bbrc.2012.03.050Robin, E., Simerabet, M., Hassoun, S. M., Adamczyk, S., Tavernier, B., Vallet, B., … Lebuffe, G. (2011). Postconditioning in focal cerebral ischemia: Role of the mitochondrial ATP-dependent potassium channel. Brain Research, 1375, 137–146. https://doi.org/10.1016/j.brainres.2010.12.054Talukder, M. A. H., Johnson, W. M., Varadharaj, S., Lian, J., Kearns, P. N., El-Mahdy, M. A., … Zweier, J. L. (2011). Chronic cigarette smoking causes hypertension, increased oxidative stress, impaired NO bioavailability, endothelial dysfunction, and cardiac remodeling in mice. American Journal of Physiology-Heart and Circulatory Physiology, 300(1), H388–H396. https://doi.org/10.1152/ajpheart.00868.2010Ferreira, P. G., Lima, M. A. S. S., Bernedo-Navarro, R. A., Conceição, R. A., Linhares, E., Sawaya, A. C. H. F., … Salgado, I. (2011). Stimulation of Acidic Reduction of Nitrite to Nitric Oxide by Soybean Phenolics: Possible Relevance to Gastrointestinal Host Defense. Journal of Agricultural and Food Chemistry, 59(10), 5609–5616. https://doi.org/10.1021/jf201229xBall, K. A., Castello, P. R., & Poyton, R. O. (2011). Low intensity light stimulates nitrite-dependent nitric oxide synthesis but not oxygen consumption by cytochrome c oxidase: Implications for phototherapy. Journal of Photochemistry and Photobiology B: Biology, 102(3), 182–191. https://doi.org/10.1016/j.jphotobiol.2010.12.002Talukder, M. A. H., Johnson, W. M., Varadharaj, S., Lian, J., Kearns, P. N., El-Mahdy, M. A., … Zweier, J. L. (2011). Chronic cigarette smoking causes hypertension, increased oxidative stress, impaired NO bioavailability, endothelial dysfunction, and cardiac remodeling in mice. American Journal of Physiology - Heart and Circulatory Physiology, 300(1).Robin, E., Derichard, A., Vallet, B., Hassoun, S. M., & Neviere, R. (2011). Nitric oxide scavenging modulates mitochondrial dysfunction induced by hypoxia/reoxygenation. Pharmacological Reports : PR, 63(5), 1189–1194. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22180361Ballot, C., Kluza, J., Lancel, S., Martoriati, A., Hassoun, S. M., Mortier, L., … Marchetti, P. (2010). Inhibition of mitochondrial respiration mediates apoptosis induced by the anti-tumoral alkaloid lamellarin D. Apoptosis, 15(7), 769–781. https://doi.org/10.1007/s10495-010-0471-2Liu, X., El-Sherbiny, G. A., Collard, E., Huang, X., Follmer, D., El-Mahdy, M., & Zweier, J. L. (2010). Application of carbon fiber composite minielectrodes for measurement of kinetic constants of nitric oxide decay in solution. Nitric Oxide : Biology and Chemistry, 23(4), 311–318. https://doi.org/10.1016/j.niox.2010.09.002Liu, X., El-Sherbiny, G. A., Collard, E., Huang, X., Follmer, D., El-Mahdy, M., & Zweier, J. L. (2010). Application of carbon fiber composite minielectrodes for measurement of kinetic constants of nitric oxide decay in solution. Nitric Oxide, 23(4), 311–318. https://doi.org/10.1016/j.niox.2010.09.002Liu, Y.-H., & Bian, J.-S. (2010). Bicarbonate-dependent effect of hydrogen sulfide on vascular contractility in rat aortic rings. American Journal of Physiology-Cell Physiology, 299(4), C866–C872. https://doi.org/10.1152/ajpcell.00105.2010Neviere, R., Hassoun, S. M., Decoster, B., Bouazza, Y., Montaigne, D., Maréchal, X., … Lancel, S. (2010). Caspase-dependent protein phosphatase 2A activation contributes to endotoxin-induced cardiomyocyte contractile dysfunction*. Critical Care Medicine, 38(10), 2031–2036. https://doi.org/10.1097/CCM.0b013e3181eedafbStephens, R. S., Rentsendorj, O., Servinsky, L. E., Moldobaeva, A., Damico, R., & Pearse, D. B. (2010). cGMP increases antioxidant function and attenuates oxidant cell death in mouse lung microvascular endothelial cells by a protein kinase G-dependent mechanism. American Journal of Physiology-Lung Cellular and Molecular Physiology, 299(3), L323–L333. https://doi.org/10.1152/ajplung.00442.2009Castera, L., Hatzfeld-Charbonnier, A. S., Ballot, C., Charbonnel, F., Dhuiege, E., Velu, T., … Marchetti, P. (2009). Apoptosis-related mitochondrial dysfunction defines human monocyte-derived dendritic cells with impaired immuno-stimulatory capacities. Journal of Cellular and Molecular Medicine, 13(7), 1321–1335. https://doi.org/10.1111/j.1582-4934.2008.00358.xRees, M. D., Bottle, S. E., Fairfull-Smith, K. E., Malle, E., Whitelock, J. M., & Davies, M. J. (2009). Inhibition of myeloperoxidase-mediated hypochlorous acid production by nitroxides. Biochemical Journal, 421(1), 79–86. https://doi.org/10.1042/BJ20090309Oliveira, H. C., Saviani, E. E., & Salgado, I. (2009). NAD(P)H- and superoxide-dependent nitric oxide degradation by rat liver mitochondria. FEBS Letters, 583(13), 2276–2280. https://doi.org/10.1016/j.febslet.2009.06.012Presley, T., Vedam, K., Liu, X., Zweier, J. L., & Ilangovan, G. (2009). Activation of Hsp90/NOS and increased NO generation does not impair mitochondrial respiratory chain by competitive binding at cytochrome C Oxidase in low oxygen concentrations. Cell Stress and Chaperones, 14(6), 611–627. https://doi.org/10.1007/s12192-009-0114-0Wulff, A., Oliveira, H. C., Saviani, E. E., & Salgado, I. (2009). Nitrite reduction and superoxide-dependent nitric oxide degradation by Arabidopsis mitochondria: Influence of external NAD(P)H dehydrogenases and alternative oxidase in the control of nitric oxide levels. Nitric Oxide, 21(2), 132–139. https://doi.org/10.1016/j.niox.2009.06.003Pekarova, M., Kralova, J., Kubala, L., Ciz, M., Lojek, A., Gregor, C., & Hrbac, J. (2009). Continuous electrochemical monitoring of nitric oxide production in murine macrophage cell line RAW 264.7. Analytical and Bioanalytical Chemistry, 394(5), 1497–1504. https://doi.org/10.1007/s00216-009-2813-xCastera, L., Hatzfeld-Charbonnier, A. S., Ballot, C., Charbonnel, F., Dhuiege, E., Velu, T., … Marchetti, P. (2009). Apoptosis-related mitochondrial dysfunction defines human monocyte-derived dendritic cells with impaired immuno-stimulatory capacities. Journal of Cellular and Molecular Medicine, 13(7), 1321–1335. https://doi.org/10.1111/j.1582-4934.2008.00358.xLam, M. A., Pattison, D. I., Bottle, S. E., Keddie, D. J., & Davies, M. J. (2008). Nitric Oxide and Nitroxides Can Act as Efficient Scavengers of Protein-Derived Free Radicals. Chemical Research in Toxicology, 21(11), 2111–2119. https://doi.org/10.1021/tx800183tLiu, X., Yan, Q., Baskerville, K. L., & Zweier, J. L. (2007). Estimation of Nitric Oxide Concentration in Blood for Different Rates of Generation. Journal of Biological Chemistry, 282(12), 8831–8836. https://doi.org/10.1074/jbc.M611684200Liu, X., Yan, Q., Baskerville, K. L., & Zweier, J. L. (2007). Estimation of nitric oxide concentration in blood for different rates of generation. Evidence that intravascular nitric oxide levels are too low to exert physiological effects. The Journal of Biological Chemistry, 282(12), 8831–8836. https://doi.org/10.1074/jbc.M611684200Hassoun, S. M., Lancel, S., Petillot, P., Decoster, B., Favory, R., Marchetti, P., & Neviere, R. (2006). Sphingosine impairs mitochondrial function by opening permeability transition pore. Mitochondrion, 6(3), 149–154. https://doi.org/10.1016/j.mito.2006.05.001Edwards, J. C., Johnson, M. S., & Taylor, B. L. (2006). Differentiation between electron transport sensing and proton motive force sensing by the Aer and Tsr receptors for aerotaxis. Molecular Microbiology, 62(3), 823–837. https://doi.org/10.1111/j.1365-2958.2006.05411.xLarche, J., Lancel, S., Hassoun, S. M., Favory, R., Decoster, B., Marchetti, P., … Neviere, R. (2006). Inhibition of Mitochondrial Permeability Transition Prevents Sepsis-Induced Myocardial Dysfunction and Mortality. Journal of the American College of Cardiology, 48(2), 377–385. https://doi.org/10.1016/j.jacc.2006.02.069Kramarenko, G. G., Hummel, S. G., Martin, S. M., & Buettner, G. R. (2006). Ascorbate reacts with singlet oxygen to produce hydrogen peroxide. Photochemistry and Photobiology, 82(6), 1634–1637. https://doi.org/10.1562/2006-01-12-RN-774Liu, X., Liu, Q., Gupta, E., Zorko, N., Brownlee, E., & Zweier, J. L. (2005). Quantitative measurements of NO reaction kinetics with a Clark-type electrode. Nitric Oxide, 13(1), 68–77. https://doi.org/10.1016/j.niox.2005.04.011Liu, X., Cheng, C., Zorko, N., Cronin, S., Chen, Y.-R., & Zweier, J. L. (2004). Biphasic modulation of vascular nitric oxide catabolism by oxygen. American Journal of Physiology-Heart and Circulatory Physiology, 287(6), H2421–H2426. https://doi.org/10.1152/ajpheart.00487.2004 Reviews
WPI (World Precision Instruments Inc.,)是研发生命科学与医学科研仪器的领跑者,1967年在美国耶鲁大学(YaleUniversity)成立,总部位于美国佛罗里达州萨拉索塔市(Sarasota,Florida)。
WPI公司产品面广,产品线长,由60 年代初期的神经电生理产品,逐渐延伸到90 年代的生物感应器、光谱检测系列产品,到今天21 世纪再拓展到心血管生理、肌肉生理学和器官生理学等领域的产品,供应实验室产品种类超过5000种,是美国、英国、德国、加拿大、澳大利亚、新西兰、法国等欧美生命科学领域主流实验室仪器设备的重要供应商。近年来,WPI公司全新的肌肉生理学产品、全球*的单细胞肌肉张力测量系统、创新的生物荧光光谱测量系统等革新产品不断上市,满足了专家学者们更完善、更高效、更精确的研究需求。
新品排行榜
1
WPI/Metzenbaum Scissors, 14 cm/n...
2
WPI/Probe, 0.25mm Tip, 45 deg, 1...
3
WPI/Fine Mesh Baskets with Lids/...
4
WPI/NanoFil Needles/normal/VAR-3...
5
WPI/Lids for Crimped Wire Mesh S...
6
WPI/Vessel Cannulation Forceps/n...
7
WPI/Jaffe Forceps, 10 cm, Curved...
8
WPI/Electrolyte for ISO-HPO-2 Se...
9
WPI/Moorfield Forceps, 11 cm/nor...
10
WPI/Bone Wax/normal/501771
文章排行榜
1
Home - Echelon Biosciences
2
Lapatinib (GW-572016) Ditosylate | 购买HER2 抑制剂 - Selleck
3
四膜虫的营养生长实验-资讯wiki版
4
【应用文章】使用Viscotek TDAmax多检测器凝胶渗透色谱检测分离乳清蛋 ...
5
Fragment Analyzer Brochure - Advanced Analytical
6
动物手术器械
7
《Cell stem Cell》lncTCF7经Wnt通路调控肝癌干细胞自我更新!
8
led灯珠型号一览表CD2525正白灯珠参数
9
上海艾韦特(A.V.T.)医药科技有限公司-医流比价网
10
wpiinc湖南代理
微信公众号

手机扫码,关注动态