

提醒:代购产品,无质量问题不接受退换货,下单前请仔细核对信息。下单后请及时联系客服
核对商品价格,订单生效后再付款。
Megazyme/Total Dietary Fiber Assay Kit/K-TDFR-200A/200 assays
价格:
自营商城
解放采购
正品保障
及时交付
厂家直采
一站服务
货号:
品牌:
会员服务:
尊享会员价
贵宾专线
运费优惠
闪电退款
福利优惠
上门换新
友情提示
以上价格仅为参考,请联系客服询价。
免费咨询热线
4000-520-616
产品说明
TheTotalDietaryFibertestkitissuitableforthemeasurementandanalysisofTotalDietaryFiber.ViewMegazyme’slatestGuideforDietaryFiberAnalysis.Determinationoftotaldietaryfibreandavailablecarbohydrates:Arapidintegratedprocedurethatsimulatesinvivodigestion.McCleary,B.V.,Sloane,N.&Draga,A.(2015).Starch/Stärke,67(9-10),860–883.LinktoArticleReadAbstractThenewdefinitionofdietaryfibreintroducedbyCodexAlimentariusin2008includesresistantstarchandtheoptiontoincludenon-digestIBLeoligosaccharides.Implementationofthisdefinitionrequirednewmethodology.AnintegratedtotaldietaryfibremethodwasevaluatedandacceptedbyAOACInternationalandAACCInternational(AOACMethods2009.01and2011.25;AACCMethod32–45.01and32–50.01,andrecentlyadoptedbyCodexAlimentariusasaTypeIMethod.However,inapplicationofthemethodtoadiverserangeoffoodsamplesandparticularlyfoodingredients,somelimitationshavebeenidentified.Oneoftheongoingcriticismsofthismethodwasthatthetimeofincubationwithpancreaticα-amylase/amyloglucosidasemixturewas16 h,whereasthetimeforfoodtotransitthroughthehumansmallintestinewaslikelytobeapproximately4 h.Inthecurrentwork,weuseanincubationtimeof4 h,andhaveevaluatedincubationconditionsthatyieldresistantstarchanddietaryvaluesinlinewithileostomyresultswithinthistimeframe.Problemsassociatedwithproduction,hydrolysisandchromatographyofvariousoligosaccharideshavebeenaddressedresultinginamorerapidprocedurethatisdirectlyapplicabletoallfoodsandfoodingredientscurrentlyavailable.Measurementofdietaryfibrecomponents:theimportanceofenzymepurity,activityandspecificity.McCleary,B.V.(2001),“AdvancedDietaryFibreTechnology”,(B.V.McClearyandL.Prosky,Eds.),BlackwellScience,Oxford,U.K.,pp.89-105.LinktoArticleReadAbstractInterestindietaryfibreisundergoingadramaticrevival,thanksinparttotheintroductionofnewcarbohydratesasdietaryfibrecomponents.Muchemphasisisbeingplacedondetermininghowmuchfibreispresentinafood.Linkingaparticularamountoffibretoaspecifichealthbenefitisnowanimportantareaofresearch.Theterm"dietaryfibre"firstappearedin1953,andreferredtohemicelluloses,cellulosesandlignin(Theandere/tf/.1995).Trowell(1974)recommendedthistermasareplacementforthenolongeracceptableterm"crudefibre".Burkitt(1995)haslikenedtheinterestindietaryfibretothegrowthofariverfromitsfirsttrickletoamightytorrentHeobservesthatdietaryfibre"wasfirstviewedasmerelythelessdigestibleconstituentoffoodwhichexertsalaxativeactionbyirritatingthegut",thusacquiringthedesignation"roughage"-atermlaterreplacedby"crudefibre"andultimatelyby"dietaryfibre".Variousdefinitionsofdietaryfibrehaveappearedovertheyears,partlyduetothevariousconceptsusedinderivingtheterm(i.e.originofmaterial,resistancetodigestion,fermentationinthecolon,etc.),andpartlytothedifficultiesassociatedwithitsmeasurementandlabelling(Mongeauetal.1999).Theprincipalcomponentsofdietaryfibre,astrADItionallyunderstood,arenon-starchpolysaccharides(whichinplantfibreareprincipallyhemicellulosesandcelluloses),andthenon-carbohydratephenoliccomponents,cutin,suberinandwaxes,withwhichtheyareassociatedinnature.In1976,thedefinitionofdietaryfibrewasmodifiedtoincludegumsandsomepecticsubstances,basedontheresistancetodigestionofthesecomponentsintheupperintestinaltract.Forthepurposesoflabelling,Englystetal.(1987)proposedthatdietaryfibrebedefinedas"non-starchpolysaccharides(NSP)inthedietthatarenotdigestedbytheendogenoussecretionsofthehumandigestivetract".MethodswereconcurrentlydevelopedtospecificallymeasureNSP(Englystetal.1994).Measuringdietaryfibre.McCleary,B.V.(1999).TheWorldofIngredients,50-53.LinktoArticleReadAbstractInterestindietaryfibreisundergoingadramaticrevivalthanksinparttotheintroductionofnewcarbohydratesasdietaryfibrecomponents.Muchemphasisisbeingplacedondetermininghowmuchfibreispresentinafood.Linkingaparticularamountoffibretoaspecifichealthbenefitisnowanimportantareaofresearch.TotalDietaryFibre.Theterm“dietaryfibre”firstappearedin1953andreferredtohemicelluloses,cellulosesandlignin(1).In1974,Trowell(2)recommendedthistermasareplacementforthenolongeracceptableterm“crudefibre”Burkitt(3)haslikenedtheinterestindietaryfibretothegrowthofariverfromitsfirsttrickletoamightytorrent.Heobservesthatdietaryfibre“wasviewedasmerelythelessdigestibleconstituentoffoodwhichexertsalaxativeactionbyirritatingthegut“thusacquiringthedesignation“roughage”atermwhichwaslaterreplacedby“crudefibre”andultimatelyby“dietaryfibre”Variousdefinitionsofdietaryfibrehaveappearedovertheyears,partlyduethevariousconceptsusedinderivingtheterm(i.e.originofmaterial,resistancetodigestion,fermentationinthecolonetc.),andpartlytothedifficultiesassociatedwithitsmeasurementandlabelling(4).Theprinciplecomponentsofdietaryfibre,astraditionallyunderstood,arenon-starchpolysaccharides,whichinplantfibreareprincipallyhemicellulosesandcelluloses,andthenon-carbohydratephenoliccomponents,cutin,suberinandwaxeswithwhichtheyareassociatedinNature.Enzymepurityandactivityinfibredeterminations.McCleary,B.V.(1999).CerealFoodsWorld,44,590-596.LinktoArticleReadAbstractDietaryfiberismainlycomposedofplantcellwallpolysaccharidessuchascellulose,hemicellulose,andpecticsubstances,butitalsoincludesligninandotherminorcomponents(1).Basically,itcoversthepolysaccharidesthatarenothydrolyzedbytheendogenoussecretionsofthehumandigestivetract(2,3).Thisdefinitionhasservedasthetargetforthosedevelopinganalyticalproceduresforthemeasurementofdietaryfiberforqualitycontrolandregulatoryconsiderations(4).Mostproceduresforthemeasurementoftotaldietaryfiber(TDF),orspecificpolysaccharidecomponents,eitherinvolvesomeenzymetreatmentstepsoraremainlyenzyme-based.InthedevelopmentofTDFproceduressuchastheProskymethod(AOACInternational985.29,AACC32—05)(5),theUppsalamethod(AACC32-25)(6),andtheEnglystmethod(7),theaimwastoremovestarchandproteinthroughenzymetreatment,andtomeasuretheresidueasdietaryfiber(afterallowingforresidual,undigestedproteinandash).Dietaryfiberwasmeasuredeithergravimetricallyorbychemicalorinstrumentalprocedures.Manyoftheenzymetreatmentstepsineachofthemethods,particularlytheprosky(5)andtheUppsala(6)methodsareverysimilar.Asanewrangeofcarbohydratesisbeingintroducedaspotentialdietaryfibercomponents,theoriginalassayprocedureswillneedtobereexamined,andinsomecasesslightlymodified,toensureaccurateandquantitativemeasurementofthesecomponentsandofTDF.These“new”dietaryfibercomponentsincluderesistantnondigestibleoligosaccharides;nativeandchemicallymodifiedpolysaccharidesofplantandalgalorigin(galactomannan,chemicallymodifiedcelluloses,andagarsandcarrageenans);andresistantstarch.Tomeasurethesecomponentsaccurately,thepurity,activity,andspecificityoftheenzymesemployedwillbecomemuchmoreimportant.Aparticularexampleofthisisthemesurementoffructan.Thiscarbohydrateconsistsofafractionwithahighdegreeofpolymerization(DP)thatisprecipitatedinthestandardProskymethod(5,8)andalowDPfractionconsequentlyisnotmeasured(9).Resistantstarchposesaparticularproblem.Thiscomponentisonlypartiallyresistanttodegradationbyα-amylase,sothelevelofenzymeusedandtheincubationconditions(timeandtemperature)arecritical.Importanceofenzymepurityandactivityinthemeasurementoftotaldietaryfibreanddietaryfibrecomponents.McCleary,B.V.(2000).JournalofAOACInternational,83(4),997-1005.LinktoArticleReadAbstractAstudywasmadeoftheeffectoftheactivityandpurityofenzymesintheassayoftotaldietaryfiber(AOACMethod985.29)andspecificdietaryfibercomponents:resistantstarch,fructan,andβ-glucan.Inthemeasurementoftotaldietaryfibercontentofresistantstarchsamples,theconcentrationofα-amylaseiscritical;however,variationsinthelevelofamyloglucosidasehavelittleeffect.Contaminationofamyloglucosidasepreparationswithcellulasecanresultinsignificantunderestimationofdietaryfibervaluesforsamplescontainingβ-glucan.Pureβ-glucanandcellulasepurifiedfromAspergillusnigeramyloglucosidasepreparationswereusedtodetermineacceptablecriticallevelsofcontamination.Sucrose,whichinterfereswiththemeasurementofinulinandfructooligosaccharidesinplantmaterialsandfoodproducts,mustberemovedbyhydrolysisofthesucrosetoglucoseandfructosewithaspecificenzyme(sucrase)followedbyborohydridereductionofthefreesugars.Unlikeinvertase,sucrasehasnoactiononlowdegreeofpolymerization(DP)fructooligosaccharides,suchaskestoseorkestotetraose.Fructanishydrolyzedtofructoseandglucosebythecombinedactionofhighlypurifiedexo-andendo-inulinases,andthesesugarsaremeasuredbythep-hydroxybenzoicacidhydrazidereducingsugarmethod.Specificmeasurementofβ-glucanincerealflourandfoodextractsrequirestheuseofhighlypurifiedendo-1,3:1,4β-glucanaseandA.nigerβ-glucosidase.β-glucosidasefromalmondsdoesnotcompletelyhydrolyzemixedlinkageβ-glucooligosaccharidesfrombarleyoroatβ-glucan.Contaminationoftheseenzymeswithstarch,maltosaccharide,orsucrose-hydrolyzingenzymesresultsinproductionoffreeglucosefromasourceotherthanβ-glucan,andthusanoverestimationofβ-glucancontent.Theglucoseoxidaseandperoxidaseusedintheglucosedeterminationreagentmustbeessentiallydevoidofcatalaseandα-andβ-glucosidase.Twoissuesindietaryfibermeasurement.McCleary,B.V.(2001).CerealFoodsWorld,46(4),164-165.LinktoArticleReadAbstractEnzymeactivityandpurityofthesetopics,theeasiesttodealwithistheimportanceofenzymepurityandactivity.Asascientistactivelyinvolvedinpolysaccharideresearchoverthepast25years,Ihavecometoappreciatetheimportanceofenzymepurityandspecificityinpolysaccharidemodificationandmeasurement(7).Thesefactorstranslatedirectlytodietaryfiber(DF)methodology,becausethemajorcomponentsofDFarecarbohydratepolymersandoligomers.ThecommitteereportpublishedintheMarchissueofCerealFOODSWORLDrefersonlytothemethodologyformeasuringenzymepurityandactivity(8)thatleduptheAOACmethod985.29(2).Inthisworkenzymepuritywasgaugedbythelackofhydrolysis(i.e.,completerecovery)ofaparticularDFcomponent(e.g.β-glucan,larchgalactanorcitruspectin).EnzymeactivitywasmeasuredbytheABIlitytocompletelyhydrolyzerepresentativestarchandprotein(namelywheatstarchandcasein).Theserequirementsandrestrictionsonenzymepurityandactivitywereadequateatthetimethemethodwasinitiallydevelopedandservedasausefulworkingguide.However,itwasrecognizedthattherewasaneedformorestringentqualitydefinitionsandassayproceduresforenzymesusedinDFmeasurements.Dietaryfibreanalysis.McCleary,B.V.(2003).ProceedingsoftheNutritionSociety,62,3-9.LinktoArticleReadAbstractThe"goldstandard"methodforthemeasurementoftotaldietaryfibreisthatoftheAssociationofOfficialAnalyticalChemists(2000;method985.29).Thisprocedurehasbeenmodifiedtoallowmeasurementofsolubleandinsolubledietaryfibre,andbuffersemployedhavebeenimproved.However,therecognitionofthefactthatnon-digestibleoligosaccharidesandresistantstarchalsobehavephysiologicallyasdietaryfibrehasnecessitatedare-examinationofthedefinitionofdietaryfibre,andinturn,are-evaluationofthedietaryfibremethodsoftheAssociationofOfficialAnalyticalChemists.Withthisrealisation,theAmericanAssociationofCerealChemistsappointedascientificreviewcommitteeandchargeditwiththetaskofreviewingand,ifnecessary,updatingthedefinitionofdietaryfibre.Itorganisedvariousworkshopsandacceptedcommentsfrominterestedpartiesworldwidethroughaninteractivewebsite.Morerecently,the(US)FoodandNutritionBoardoftheInstituteofHealth,NationalAcademyofSciences,undertheoversightoftheStandingCommitteeontheScientificEvaluationofDietaryReferenceIntakes,assembledapaneltodevelopaproposeddefinition(s)ofdietaryfibre.Variouselementsofthesedefinitionswereinagreement,butnotall.Whatwasclearfrombothreviewsisthatthereisanimmediateneedtore-evaluatethemethodsthatareusedfordietaryfibremeasurementandtomakeappropriatechangeswhererequired,andtofindnewmethodstofillgaps.Inthispresentation,the"stateoftheart"inmeasurementoftotaldietaryfibreanddietaryfibrecomponentswillbedescribedanddiscussed,togetherwithsuggestionsforfutureresearch.Measurementofnoveldietaryfibres.McCleary,B.V.&Rossiter,P.(2004).JournalofAOACInternational,87(3),707-717.LinktoArticleReadAbstractWiththerecognitionthatresistantstarch(RS)andnondigestibleoligosaccharides(NDO)actphysiologicallyasdietaryfiber(DF),aneedhasdevelopedforspecificandreliableassayproceduresforthesecomponents.TheabilityofAOACDFmethodstoaccuratelymeasureRSisdependentonthenatureoftheRSbeinganalyzed.Ingeneral,NDOarenotmeasuredatallbyAOACDFMethods985.29or991.43,theoneexceptionbeingthehighmolecularweightfractionoffructo-oligosaccharides.ValuesobtainedforRS,ingeneral,arenotingoodagreementwithvaluesobtainedbyinvitroproceduresthatmorecloselyimitatetheinvivosituationinthehumandigestivetract.Consequently,specificmethodsfortheaccuratemeasurementofRSandNDOhavebeendevelopedandvalidatedthroughinterlaboratorystudies.Inthispaper,modificationstoAOACfructanMethod999.03toallowaccuratemeasurementofenzymicallyproducedfructo-oligosaccharidesaredescribed.SuggestedmodificationstoAOACDFmethodstoensurecompleteremovaloffructanandRS,andtosimplifypHadjustmentbeforeamyloglucosidaseaddition,arealsodescribed.MeasurementoftotaldietaryfiberusingAOACmethod2009.01(AACCInternationalapprovedmethod32-45.01):Evaluationandupdates.McCleary,B.V.,Sloane,N.,Draga,A.&Lazewska,I.(2013).CerealChemistry,90(4),396-414.LinktoArticleReadAbstractTheCodexCommitteeonMethodsofAnalysisandSamplingrecentlyrecommended14methodsformeasurementofdietaryfiber,eightofthesebeingtypeImethods.OfthesetypeImethods,AACCInternationalApprovedMethod32-45.01(AOACmethod2009.01)istheonlyprocedurethatmeasuresallofthedietaryfibercomponentsasdefinedbyCodexAlimentarius.OthermethodssuchastheProskymethod(AACCIApprovedMethod32-05.01)givesimilaranalyticaldataforthehigh-molecular-weightdietaryfibercontentsoffoodandvegetableproductslowinresistantstarch.Inthecurrentwork,AACCIApprovedMethod32-45.01hasbeenmodifiedtoallowaccuratemeasurementofsampleshighinparticularfructooligosaccharides:forexample,fructotriose,which,intheHPLCsystemused,chromatographsatthesamepointasdisaccharides,meaningthatitiscurrentlynotincludedinthemeasurement.Incubationoftheresistantoligosaccharidesfractionwithsucrase/β-galactosidaseremovesdisaccharidesthatinterferewiththequantitationofthisfraction.Thedietaryfibervalueforresistantstarchtype4(RS4),variessignificantlywithdifferentanalyticalmethods,withmuchlowervaluesbeingobtainedwithAACCIApprovedMethod32-45.01thanwith32-05.01.ThisdifferenceresultsfromthegreatersusceptibilityofRS4tohydrolysisbypancreaticα-amylasethanbybacterialα-amylase,andalsoagreatersusceptibilitytohydrolysisatlowertemperatures.OnhydrolysisofsampleshighinstarchintheassayformatofAACCIApprovedMethod32-45.01(AOACmethod2009.01),resistantmaltodextrinsareproduced.Themajorcomponentisaheptasaccharidethatishighlyresistanttohydrolysisbymostofthestarch-degradingenzymesstudied.However,itishydrolyzedbythemaltase/amyloglucosidase/isomaltaseenzymecomplexpresentinthebrushborderliningofthesmallintestine.Asaconsequence,AOACmethods2009.01and2011.25(AACCIApprovedMethods32-45.01and32-50.01,respectively)mustbeupdatedtoincludeanadditionalincubationwithamyloglucosidasetoremovetheseoligosaccharides.Anintegratedprocedureforthemeasurementoftotaldietaryfibre(includingresistantstarch),non-digestibleoligosaccharidesandavailablecarbohydrates.McCleary,B.V.(2007).AnalyticalandBioanalyticalChemistry,389(1),291-308.LinktoArticleReadAbstractAmethodisdescribedforthemeasurementofdietaryfibre,includingresistantstarch(RS),non-digestibleoligosaccharides(NDO)andavailablecarbohydrates.Basically,thesampleisincubatedwithpancreaticα-amylaseandamyloglucosidaseunderconditionsverysimilartothosedescribedinAOACOfficialMethod2002.02(RS).Reactionisterminatedandhighmolecularweightresistantpolysaccharidesareprecipitatedfromsolutionwithalcoholandrecoveredbyfiltration.RecoveryofRS(formostRSsources)isinlinewithpublisheddatafromileostomystudies.Theaqueousethanolextractisconcentrated,desaltedandanalysedforNDObyhigh-performanceliquidchromatographybyamethodsimilartothatdescribedbyOkuma(AOACMethod2001.03),exceptthatforlogisticalreasons,D-sorbitolisusedastheinternalstandardinplaceofglycerol.Availablecarbohydrates,definedasD-glucose,D-fructose,sucrose,theD-glucosecomponentoflactose,maltodextrinsandnon-resistantstarch,aremeasuredasD-glucoseplusD-fructoseinthesampleafterhydrolysisofoligosaccharideswithamixtureofsucrase/maltaseplusβ-galactosidase.Developmentandevaluationofanintegratedmethodforthemeasurementoftotaldietaryfibre.McCleary,B.V.,Mills,C.&Draga,A.(2009).QualityAssuranceandSafetyofCrops&Foods,1(4),213–224.LinktoArticleReadAbstractAnintegratedtotaldietaryfibre(TDF)method,consistentwiththerecentlyacceptedCODEXdefinitionofdietaryfibre,hasbeendeveloped.TheCODEXCommitteeonNutritionandFoodsforSpecialDietaryUses(CCNFSDU)hasbeendeliberatingforthepast8yearsonadefinitionfordietaryfibrethatcorrectlyreflectsthecurrentconsensusthinkingonwhatshouldbeincludedinthisdefinition.Asthisdefinitionwasevolving,itbecameevidenttousthatneitherofthecurrentlyavailablemethodsforTDF(AOACOfficialMethods985.29and991.43),noracombinationoftheseandothermethods,couldmeettheserequirements.Consequently,wedevelopedanintegratedTDFprocedure,basedontheprincipalsofAOACOfficialMethods2002.02,991.43and2001.03,thatiscompliantwiththenewCODEXdefinition.Thisprocedurequantitateshigh-andlow-molecularweightdietaryfibresasdefined,givinganaccurateestimateofresistantstarchandnon-digestibleoligosaccharidesalsoreferredtoaslow-molecularweightsolubledietaryfibre.Inthispaper,themethodisdiscussed,modificationstothemethodtoimprovesimplicityandreproducibilityaredescribed,andtheresultsofthefirstroundsofinterlaboratoryevaluationarereported.Determinationoftotaldietaryfiber(CODEXdefinition)byenzymatic-gravimetricmethodandliquidchromatography:collaborativestudy.McCleary,B.V.,DeVries,J.W.,Rader,J.I.,Cohen,G.,Prosky,L.,Mugford,D.C.,Champ,M.&Okuma,K.(2010).JournalofAOACInternational,93(1),221-233.LinktoArticleReadAbstractAmethodforthedeterminationoftotaldietaryfiber(TDF),asdefinedbytheCODEXAlimentarius,wasvalidatedinfoods.BasedupontheprinciplesofAOACOfficialMethodsSM985.29,991.43,2001.03,and2002.02,themethodquantitateshigh-andlow-molecular-weightdietaryfiber(HMWDFandLMWDF,respectively).In2007,McClearydescribedamethodofextendedenzymaticdigestionat37°CtosimulatehumanintestinaldigestionfollowedbygravimetricisolationandquantitationofHMWDFandtheuseofLCtoquantitatelow-molecular-weightsolubledietaryfiber(LMWSDF).Themethodthusquantitatesthecompleterangeofdietaryfibercomponentsfromresistantstarch(byutilizingthedigestionconditionsofAOACMethod2002.02)todigestionresistantoligosaccharides(byincorporatingthedeionizationandLCproceduresofAOACMethod2001.03).ThemethodwasevaluatedthroughanAOACcollaborativestudy.Eighteenlaboratoriesparticipatedwith16laboratoriesreturningvalidassaydatafor16testportions(eightblindduplicates)consistingofsampleswitharangeoftraditionaldietaryfiber,resistantstarch,andnondigestibleoligosaccharides.Thedietaryfibercontentoftheeighttestpairsrangedfrom11.57to47.83.DigestionofsamplesundertheconditionsofAOACMethod2002.02followedbytheisolationandgravimetricproceduresofAOACMethods985.29and991.43resultsinquantitationofHMWDF.ThefiltratefromthequantitationofHMWDFisconcentrated,deionized,concentratedagain,andanalyzedbyLCtodeterminetheLMWSDF,i.e.,allnondigestibleoligosaccharidesofdegreeofpolymerization3.TDFiscalculatedasthesumofHMWDFandLMWSDF.Repeatabilitystandarddeviations(Sr)rangedfrom0.41to1.43,andreproducibilitystandarddeviations(SR)rangedfrom1.18to5.44.Theseresultsarecomparabletootherofficialdietaryfibermethods,andthemethodisrecommendedforadoptionasOfficialFirstAction.Determinationofinsoluble,soluble,andtotaldietaryfiber(codexdefinition)byenzymatic-gravimetricmethodandliquidchromatography:CollaborativeStudy.McCleary,B.V.,DeVries,J.W.,Rader,J.I.,Cohen,G.,Prosky,L.,Mugford,D.C.,Champ,M.&Okuma,K.(2012).JournalofAOACInternational,95(3),824-844.LinktoArticleReadAbstractAmethodforthedeterminationofinsoluble(IDF),soluble(SDF),andtotaldietaryfiber(TDF),asdefinedbytheCODEXAlimentarius,wasvalidatedinfoods.BasedupontheprinciplesofAOACOfficialMethodsSM985.29,991.43,2001.03,and2002.02,themethodquantitateswater-insolubleandwater-solubledietaryfiber.ThismethodextendsthecapabilitiesofthepreviouslyadoptedAOACOfficialMethod2009.01,TotalDietaryFiberinFoods,Enzymatic-Gravimetric-LiquidChromatographicMethod,applicabletoplantmaterial,foods,andfoodingredientsconsistentwithCODEXDefinition2009,includingnaturallyoccurring,isolated,modified,andsyntheticpolymersmeetingthatdefinition.ThemethodwasevaluatedthroughanAOAC/AACCcollaborativestudy.Twenty-twolaboratoriesparticipated,with19laboratoriesreturningvalidassaydatafor16testportions(eightblindduplicates)consistingofsampleswitharangeoftraditionaldietaryfiber,resistantstarch,andnondigestibleoligosaccharides.Thedietaryfibercontentoftheeighttestpairsrangedfrom10.45to29.90%.DigestionofsamplesundertheconditionsofAOAC2002.02followedbytheisolation,fractionation,andgravimetricproceduresofAOAC985.29(anditsextensions991.42and993.19)and991.43resultsinquantitationofIDFandsolubledietaryfiberthatprecipitates(SDFP).Thefiltratefromthequantitationofwater-alcohol-insolubledietaryfiberisconcentrated,deionized,concentratedagain,andanalyzedbyLCtodeterminetheSDFthatremainssoluble(SDFS),i.e.,alldietaryfiberpolymersofdegreeofpolymerization=3andhigher,consistingprimarily,butnotexclusively,ofoligosaccharides.SDFiscalculatedasthesumofSDFPandSDFS.TDFiscalculatedasthesumofIDFandSDF.Thewithin-laboratoryvariability,repeatabilitySD(Sr),forIDFrangedfrom0.13to0.71,andthebetween-laboratoryvariability,reproducibilitySD(sR),forIDFrangedfrom0.42to2.24.Thewithin-laboratoryvariabilitysrforSDFrangedfrom0.28to1.03,andthebetween-laboratoryvariabilitysRforSDFrangedfrom0.85to1.66.Thewithin-laboratoryvariabilitysrforTDFrangedfrom0.47to1.41,andthebetween-laboratoryvariabilitysRforTDFrangedfrom0.95to3.14.Thisiscomparabletootherofficialandapproveddietaryfibermethods,andthemethodisrecommendedforadoptionasOfficialFirstAction.ModificationtoAOACOfficialMethods2009.01and2011.25toallowforminoroverestimationoflowmolecularweightsolubledietaryfiberinsamplescontainingstarch.McCleary,B.V.(2014).JournalofAOACInternational,97(3),896-901.LinktoArticleReadAbstractAOACOfficialMethods2009.01and2011.25havebeenmodifiedtoallowremovalofresistantmaltodextrinsproducedonhydrolysisofvariousstarchesbythecombinationofpancreaticα-amylaseandamyloglucosidase(AMG)usedintheseassayprocedures.Themajorresistantmaltodextrin,63,65-di-α-D-glucosylmaltopentaose,ishighlyresistanttohydrolysisbymicrobialα-glucosidases,isoamylase,pullulanase,pancreatic,bacterialandfungalα-amylaseandAMG.However,thisoligosaccharideishydrolyzedbythemucosalα-glucosidasecomplexofthepigsmallintestine(whichissimilartothehumansmallintestine),andthusmustberemovedintheanalyticalprocedure.HydrolysisoftheseoligosaccharideshasbeenbyincubationwithahighconcentrationofapurifiedAMGat60°C.ThisincubationresultsinnohydrolysisorlossofotherresistantoligosaccharidessuchasFOS,GOS,XOS,resistantmaltodextrins(e.g.,Fibersol2)orpolydextrose.TheeffectofthisadditionalincubationwithAMGonthemeasuredleveloflowmolecularweightsolubledietaryfiber(SDFS)andoftotaldietaryfiberinabroadrangeofsamplesisreported.Resultsfromthisstudydemonstratethattheproposedmodificationcanbeusedwithconfidenceinthemeasurementofdietaryfiber.Theinfluenceofgerminationconditionsonbeta-glucan,dietaryfibreandphytateduringthegerminationofoatsandbarley.Hübner,F.,O’Neil,T.,Cashman,K.D.&Arendt,E.K.(2010).EuropeanFoodResearchandTechnology,231(1),27-35.LinktoArticleReadAbstractThisstudyaimedtoquantifythechangescausedbyvaryinggerminationconditionsonthecontentsofsomebioactivecompoundsinbarleyandoats.Samplesofthetwograinsweregerminatedattemperaturesbetween10and20°Cforaperiodof2–6days,usingatwo-dimensionalcentralcompositedesign.Thegerminationtemperaturehadonlyminoreffectincomparisonwiththegerminationtime.Slightchangesinthemineralcontentofthemaltswereobserved,mainlycausedbysteeping.Phytatehasbeenseenasananti-nutritionalcompound,asitcomplexesmineralsandlowerstheirbioavailability.Thephytatecontentinbarleymaltswasconsiderablylowerthaninthenativekernels.Variationsinthegerminationconditionsdidnothaveasignificanteffectonphytatecontent.Inoats,degradationofphytatewassignificantlyenhancedbyprolongingthegerminationperiod.Itwaspossibletoretaintheamountsofsolubledietaryfibre,whenshortgerminationperiodswereapplied.However,longgerminationperiodscausedanextensivebreakdownofsolubledietaryfibre,especiallybeta-glucan.Thecontentofinsolublefibre,however,wasincreasedbyapplyinglonggerminationperiodsforoatmalts.TheChoiceofNutritionallyLucrativeFlourStreamsfromBarleyMillingFlow.Velebna,N.,Slukova,M.,Honcu,I.&Prihoda,J.(2012).ProcediaEngineering,42,1855-1862.LinktoArticleReadAbstractTheschemeofflourmillinginmillcanbeexpressedindiagramasamillingflow.Therecanbedescribedaweightpartorpercentageofflourfromeverystageofbreaking,scratchandreduction.Thesimilarflowdiagramcanbedrawnexpressingtheashcontentineveryofflourstreamsofawholemillingflow.Amillingflowofbarleyisconsiderablydifferentfromthatofwheatandtosomepartalsofromryemillflow.Currently,high-yieldingnakedbarleycultivarsarepreferredintheWesternworld,andtheycanbeusedinproductswhereoutstandingstarchornon-starchpolysaccharidepropertiesarerequired.Theaimofthisworkwastoassessthemillingresultswithregardtotheyieldofsinglestreamsinconnectionwiththeirchemicalcomposition,especiallyβ-glucans(fiber)content.BarleysamplewasnakedbarleyofCzechoriginofcrop2010.Thebalancetablesshowingtheyieldofβ-glucansandashinsinglestreamswerecompiled.Resultingdatawerejudgedincomparisontothemillingflowwiththepurposetorecommendtheparametersandbeststreamsofmillingflowasasourceofspecialnutritionallylucrativeproducts.MushroomsofgenusPleurotusasasourceofdietaryfibresandglucansforfoodsupplements.Synytsya,A.,Míčková,K.,Jablonský,I.,Sluková,M.&Čopíková,J.(2008).CzechJournalofFoodSciences,26(6),441-446.LinktoArticleReadAbstractFruitbodies(separatelypileiandstems)ofmushroomsPleurotusostreatus(fourstrains)andPleurotuseryngiiwerecharacterisedasasourceofpolysaccharides.ThecontentsofglucansanddietaryfibresweredeterminedwithusingtherespectiveMegazymeenzymatickits.Enzymaticanalysisofthefruitbodiesconfirmedsignificantdifferencesinthecontentsofthesecomponentsamongthespeciesandstrains.Thestemscontainedmoreinsolubledietaryfibresthanthepileiinallthecasesandmoreβ-glucansinmostcases.However,relativelyhighcontentsofβ-glucan(20–50%ofdrymatter)couldbearesultofincompleteenzymatichydrolysisofinsolubleα-1,3-glucans.Nevertheless,lowfoodqualitystemsofmushroomsPleurotussp.couldbeavaluablesourceofcellwallglucansforthepreparationoffoodsupplements.Insolublefiber-richfractionsderivedfromAverrhoacarambola:hypoglycemiceffectsdeterminedbyinvitromethods.Chau,C.F.,Chen,C.H.&Lin,C.Y.(2004).LWT-FoodScienceandTechnology,37(3),331-335.LinktoArticleReadAbstractThehypoglycemiceffectsofseveralinsolublefiber-richfractions(FRFs)includinginsolubledietaryfiber,alcohol-insolublesolid,andwater-insolublesolidisolatedfromthepomaceofAverrhoacarambolawereinvestigatedbysomeinvitromethods.ThisstudyevidencedthatthesethreeinsolubleFRFscouldeffectivelyadsorbglucose,retardglucosediffusion,postponethereleaseofglucosefromstarch,andinhibittheactivityofα-amylasetodifferentextents.Allofthesemechanismsmightcreateaconcertedfunctioninloweringtherateofglucoseabsorptionandasaresultdecreasethepostprandialserumglucoseconcentration.OurresultsrevealedthatthehypoglycemiceffectsoftheseinsolubleFRFsweresignificantly(PEffectsofprocessvariablesandadditionofpolydextroseandwheyproteinisolateonthepropertiesofbarleyextrudates.Kirjoranta,S.,Solala,K.,Suuronen,J.P.,Penttilä,P.,Peura,M.,Serimaa,R.,TenkanenM.&Jouppila,K.(2012).InternationalJournalofFoodScience&Technology,47(6),1165-1175.LinktoArticleReadAbstractExtrusioncookingiscommonlyusedintheproductionofsnacks.Inthepresentstudy,extrudateswerepreparedusingbarleyflouraloneandwiththeadditionofeitherpolydextrose(PD)orwheyproteinisolate(WPI)andbothPDandWPI.Independentprocessvariableswerewatercontentofthemass(17%,20%and23%),screwspeed(200,350and500rpm)andtemperatureofsection6anddie(110,130and150°C).Expansion,hardness,watercontent,porosityandchemicalcompositionoftheextrudateswereanalysed.HighlyporousandexpandedsnackproductswithhighdietaryfibreandproteincontentswereobtainedfrombarleyflourandWPIwhenwatercontentofmasswas17%,screwspeed500rpmandtemperatureofsection6anddie130°C.BarleyflouraloneorwithPDresultedinhardandnon-expandedextrudates.Expansionofextrudateswasstatisticallysignificantlyincreasedwithdecreasingwatercontentofthemassandincreasingscrewspeedinalltrials.EliminationofresistantstarchtypeIIwithintheframeworkoftotalstarchanddietaryfibreanalysisbymicrowaveirradiation.Themeier,H.,Hollmann,J.,Neese,U.&Lindhauer,M.G.(2010).QualityAssuranceandSafetyofCrops&Foods,2(1),46-51.LinktoArticleReadAbstractIntroductionThepresenceofresistantstarchinsamplescontainingnon-starchpolysaccharideshasalwaysbeenachallengetoenzymatictotalstarchandtotalfibreanalysis.ObjectiveandmethodsBasedonmicrowave-inducedpressuredisintegrationtechniquetheAssociationofOfficialAnalyticalChemistsmethodsforthedeterminationoftotalstarch(AOAC996.11)andtotaldietaryfibre(AOAC991.43)havebeenmodifiedtocompletelyeliminateundesirableresistantstarchfractionswithrespecttodigestionproceduresusingThermostableα-amylaseandamyloglucosidase.ResultsMicrowavetreatmentofhigh-amylosestarchsamplesresultedinexcellenttotalstarchrecoveryintheAssociationofOfficialAnalyticalChemistsstandardmethodno.996.11.AfterintegrationofmicrowavedisintegrationtechniqueintothetotaldietaryfibremethodAOAC911.43irradiationexperimentswithdifferentmodelmixturesconsistingofnon-starchpolysaccharidescomponentsandhigh-amylosestarchfractionsresultedinthecompleteeliminationofundesirableresistantstarchfractions.ConclusionThereforethemicrowavetechniquecanbeaveryefficientmeansfortheeliminationofresistantstarchandprovidesmorerealisticvaluesinanalyticaltotaldietaryfibreprocedureswithrespecttosamplescontainingcriticalenzymeresistantstarches.Theinfluenceofgerminationconditionsonbeta-glucan,dietaryfibreandphytateduringthegerminationofoatsandbarley.Hübner,F.,O’Neil,T.,Cashman,K.D.&Arendt,E.K.(2010).EuropeanFoodResearchandTechnology,231(1),27-35.LinktoArticleReadAbstractThisstudyaimedtoquantifythechangescausedbyvaryinggerminationconditionsonthecontentsofsomebioactivecompoundsinbarleyandoats.Samplesofthetwograinsweregerminatedattemperaturesbetween10and20°Cforaperiodof2–6days,usingatwo-dimensionalcentralcompositedesign.Thegerminationtemperaturehadonlyminoreffectincomparisonwiththegerminationtime.Slightchangesinthemineralcontentofthemaltswereobserved,mainlycausedbysteeping.Phytatehasbeenseenasananti-nutritionalcompound,asitcomplexesmineralsandlowerstheirbioavailability.Thephytatecontentinbarleymaltswasconsiderablylowerthaninthenativekernels.Variationsinthegerminationconditionsdidnothaveasignificanteffectonphytatecontent.Inoats,degradationofphytatewassignificantlyenhancedbyprolongingthegerminationperiod.Itwaspossibletoretaintheamountsofsolubledietaryfibre,whenshortgerminationperiodswereapplied.However,longgerminationperiodscausedanextensivebreakdownofsolubledietaryfibre,especiallybeta-glucan.Thecontentofinsolublefibre,however,wasincreasedbyapplyinglonggerminationperiodsforoatmalts.Hypocholesterolemicactivityofbuckwheatflourismediatedbyincreasingsterolexcretionanddown-regulationofintestinalNPC1L1andACAT2.Yang,N.,Li,Y.M.,Zhang,K.,Jiao,R.,Ma,K.Y.,Zhang,R.,RenG.&Chen,Z.Y.(2014).JournalofFunctionalFoods,6,311-318.LinktoArticleReadAbstractInterestinTartarybuckwheatasacholesterol-loweringfunctionalfoodisincreasing.Thepresentstudywasto(i)investigatetherelativehypocholesterolemicactivityofTartarybuckwheatflourcomparedwiththatofwheatandriceflour;and(ii)studytheinteractionofthesethreeflourswithgeneexpressionofsteroltransportersandproteinsinvolvedincholesterolabsorption.Thirty-sixmalehamstersweredividedintofourgroupsfedeitherthecontroloroneofthreeexperimentaldietscontaining24%respectiveflour,foraperiodof6weeks.ResultsshowedthatTartarybuckwheatflourbutnowheatandricefloursreducedplasmatotalcholesterol(TC)andnon-high-densitylipoproteincholesterol(non-HDL)aswellashepaticcholesterolconcentrations.Comparedwiththatofwheatandriceflours,supplementationofTartarybuckwheatflourintodietledtogreaterneutralsterolexcretionandlessermRNAofintestinalNiemann-PickC1Like1(NPC1L1)andacyl-CoA:cholesterolacyltransferase2(ACAT2).ItwasthereforeconcludedthatTartarybuckwheatflourwashypocholesterolemicviainhibitionofcholesterolabsorption,mostlikelymediatedbydown-regulationofintestinalNPC1L1andACAT2.DietaryfibrefractionsincerealfoodsmeasuredbyanewintegratedAOACmethod.Hollmann,J.,Themeier,H.,Neese,U.&Lindhauer,M.G.(2013).FoodChemistry,140(3),586-589.LinktoArticleReadAbstractThereliabledeterminationofsoluble,insolubleandtotaldietaryfibreinbakedgoodsandcerealfloursisanimportantissueforresearch,nutritionallabellingandmarketing.Wecomparedtotaldietaryfibre(TDF)contentsofselectedcerealbasedfoodsdeterminedbyAOACMethod991.43andthenewAOACMethod2009.01.Fifteenbreadandbakeryproductswereincludedinthestudy.OurresultsshowedthatTDFvaluesofcerealproductsdeterminedbyAOACMethod2009.01werealwayssignificantlyhigherthanthosedeterminedbyAOACMethod991.43.ThiswasexplainedbytheinclusionoflowmolecularweightsolublefibrefractionsandresistantstarchfractionsintheTDFmeasurementbyAOAC2009.01.ThisdocumentsthatnutritionallabellingofcerealproductsposesthechallengehowtoupdateTDFdatainnutrientdatabasesinareasonabletimewithanacceptableexpenditure.Wheatbreadbiofortificationwithrootlets,amaltingby‐product.Waters,D.M.,Kingston,W.,Jacob,F.,Titze,J.,Arendt,E.K.&Zannini,E.(2013).JournaloftheScienceofFoodandAgriculture,93(10),2372-2383.LinktoArticleReadAbstractBACKGROUND:Barleyrootlets,amaltingby-product,arecurrentlydiscardedorusedasfodder.Inthisstudy,milledrootletsandLactobacillusplantarumFST1.7-fermentedrootletswereincorporatedintowheatbread.Theobjectivewastoformulateahigh-nutritionalternativetowholemealbreadswithimprovedtechnologicalattributes.RESULTS:Chemicalanalysesshowedthatrootletscontributenutrientsandbioactivecompounds,includingproteins,aminoacids,fattyacids,carbohydrates,dietaryfibre,polyphenolsandminerals.Rootletsareparticularlyrichinessentialaminoacids,especiallylysine,thetypicallylimitingessentialaminoacidofcereals.Additionally,rootletsofferpotentialdietaryfibrehealthbenefitssuchasprotectionagainstcardiovasculardisease,cancersanddigestivedisorders.CONCLUSION:Breadspreparedwitha(fermented)rootletinclusionlevelofupto10%comparedfavourablywithwholemealbreadsfromnutritive,technologicalandtexturalperspectives.Furthermore,theywerewellacceptedbysensorypanellists.Usingrootletsasafoodingredientwouldhavetheaddedbenefitofincreasingthismaltingby-product"smarketvalue.Theeffectofhazelnutroastedskinfromdifferentcultivarsonthequalityattributes,polyphenolcontentandtextureoffresheggpasta.Zeppa,G.,Belviso,S.,Bertolino,M.,Cavallero,M.C.,Bello,B.D.,Ghirardello,D.,Giorgis,M.,Grosso,A.,Rolle,L.,&Gerbi,V.(2015).JournaloftheScienceofFoodandAgriculture,95(8),1678-1688.LinktoArticleReadAbstractBACKGROUND:Hazelnutskinistheperispermofthehazelnutkernel.Itisseparatedfromthekernelduringtheroastingprocessandisnormallydiscarded.Recentstudieshavereportedthathazelnutskinisarichsourceofdietaryfibreaswellasofnaturalantioxidantsowingtothepresenceofphenoliccompounds.Theaimofthisstudywastoassesstheuseofhazelnutskinsobtainedfromdifferentcultivarsforenhancingthenutritionalvalueoffresheggpasta.RESULTS:Skinsobtainedfromroastedhazelnutsoffourdifferentvarietieswereusedatthreeconcentrationsasaflourreplacementinfresheggpasta.Hazelnutskinconcentrationsignificantlyinfluencedallevaluatedphysicochemicalparametersaswellasconsumers"appreciationforthepasta,butsignificantdifferenceswerealsoobservedbetweenthefourvarieties.Althoughpastaproducedwith10and15%hazelnutskindisplayedthehighestcontentofpolyphenoliccompoundsandantioxidantactivityinvitro,pastacontaining5%Tombulhazelnutskinshowedmaximumconsumerpreference.CONCLUSION:Theresultsobtainedinthepresentstudyhighlightedthatitispossibletousehazelnutskininfreshpastaproductiontoobtainafortifiedfoodwithhighfibrecontentandantioxidantactivity.Thecharacteristicsoftheresultingpastawerestrictlycorrelatedwiththehazelnutvarietyusedforskinproductionand,ofcourse,withthepercentageofskinthatwasadded.AssessmentofNutritionalQualityofDevelopedFabaBean(ViciafabaL.)Lines.Singh,A.K.,Bhardwaj,R.&Singh,I.S.(2014).JournalofAgriSearch,1(2),96-101.LinktoArticleReadAbstractFivepromisinglinesoffababean,whichincludestwolinei.e.2011215and2011410forgrainpurposewithyieldpotentialof>5.0t/haandthreepromisinglinesviz.,VFBP201302,VFBP201304andVFBP201306wereidentifiedforvegetablepurposeswithgreenpodyieldpotentialof21.51to23.54t/ha,suitableforEasternPartsofIndia.Thesedevelopedlineswereevaluatedalongwithnationalcheckvarietiesviz.,VikrantandPusaSumeetforitsnutritionalandantinutritionalquality.Developedlinescontainmoredietaryfiber,totalsolublesugar,totalstarch,phosphorus,ironmanganeseandzinc.Lessphytatewasfoundinthedevelopedlinesascomparetochecksvarieties.Maximum(1.56%)fatwasreportedinVFBP201304(ICNoICNo.0595988),Maximumdietaryfiber(13.49%)wasobtainedinthe2011410line(ICNo.0595986),however,minimumdietaryfiberwasfoundincheckvarietyVikrant(11.94).Similarly,minimum(0.10%)phytatewasnoticedintheline2011215(ICNo.0595985).Characteristicsofdestarchedcornfiberextrudatesforethanolproduction.Myat,L.&Ryu,G.H.(2014).JournalofCerealScience,60(2),289-296.LinktoArticleReadAbstractTheeffectofextrusiononcharacteristicsofdestarchedcornfiberwasinvestigated.Extrusionwasconductedatascrewspeedof300rpm,feedrateof100g/min,feedmoisturecontentof30%,melttemperatureof140°Canddiediameterof3mm.Afterextrusion,characteristicsofrawandextrudeddestarchedcornfiberwerecompared.RawandextrudeddestarchedcornfiberswereenzymaticallysaccharifiedandfermentedusingSaccharomycescerevisiae(ATCC24858).Extrusionpretreatmentresultedinlowcrystallinityindex,significantdecreaseindegreeofpolymerizationandmicrostructuredisruptionofdestarchedcornfiberforenzymaticsaccharification.Thisprovidesasignificantincreaseinxyloseyieldforfermentation.Significantincreaseinproteindigestibilityandfreeaminonitrogenwereadditionalbenefitsofextrusionforyeastnutrientinfermentation.Therefore,extrudeddestarchedcornfibersignificantlyincreased(pTheeffectsofbread‐makingprocessfactorsonAustraliansweetlupin‐wheatbreadqualitycharacteristics.Villarino,C.B.,Jayasena,V.,Coorey,R.,Chakrabarti‐Bell,S.&Johnson,S.(2014).InternationalJournalofFoodScience&Technology,49(11),2373-2381.LinktoArticleReadAbstractFactorialexperimentaldesignwasusedtoinvestigatetheeffectsof:spongeproofingtime(min),spongeanddoughmixingtime(min),finalproofingtime(min),finalproofingtemperature(°C)andbakingtime(min)onAustraliansweetlupin-wheatbreadphysicalattributes.Factorialmodelsshowthatbreadspecificvolumewaspositivelyassociatedwithspongeanddoughmixingtime(P=0.01)andbakingtime(P=0.02).Crumbareawaspositivelyassociated(P=0.01)withspongeanddoughmixingtime.Finalproofingtimepositivelyinfluencedcellwallthickness(PPPP=0.04),whilstnumberofcellswasnegativelyinfluencedbyspongeanddoughmixingtime(P=0.01).Instrumentalspringinesswaspositivelyassociatedwithspongeanddoughmixingtime(P=0.02).Spongeanddoughmixingandbakingtimeswerethetwomostsignificantprocessparametersaffectingthebreadphysicalqualityandhenceshouldbeoptimised.Effectsoffermentedandextrudedwheatbranontotaltractapparentdigestibilityofnutrients,mineralsandenergyingrowingpigs.Kraler,M.,Schedle,K.,Domig,K.J.,Heine,D.,Michlmayr,H.&Kneifel,W.(2014).AnimalFeedScienceandTechnology,197,121-129.LinktoArticleReadAbstractApigdigestibilitytrialwasconductedtoinvestigatetheeffectsoffermentationorextrusionofwheatbranincludedinabasaldietoncoefficientsoftotaltractapparentdigestibility(CTTAD)regardingdrymatter(DM),organicmatter(OM),crudeprotein(CP),crudefiber(CF),etherextract(EE),starch,energy(GE),phosphorus(P)andcalcium(Ca).Intheexperiment,9growingpigswereallocatedtoa3×3LatinsquaredesigntomeasuretheCTTADofthebasaldietcontainingdifferentmodifiedwheatbranvariants,andthereforetodemonstraterelativedifferencesintheCTTADamongthedietsasaresultofwheatbranmodification.Thewheatbranwasusedinnativeform(NWB),asfermentedbranensiledwithLactobacillusparacaseiandLactobacillusplantarum(FWB)andasextrudedwheatbran(EWB).Wheatbranvariantswereincludedat200gkg-1inaphosphorusdeficientbasaldiet.TheobtainedresultsshowthattheCTTADofDMwasincreasedwhenfeedingthedietwithFWB(+2%,PPPPPPPPPPP
Megazyme品牌产品简介

Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
Megazyme的主要产品线包括:

◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号 | 中文品名 | 用途 |
K-ACETAF | 乙酸[AF法]检测试剂盒 | 酶法定量分析乙酸最广泛使用的方法 |
K-ACHDF | 可吸收糖/膳食纤维检测试剂盒 | 酒精沉淀法测定膳食纤维 |
K-AMIAR | 氨快速检测试剂盒 | 用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。 |
K-AMYL | 直链淀粉/支链淀粉检测试剂盒 | 谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测 |
K-ARAB | 阿拉伯聚糖检测试剂盒 | 果汁浓缩液中阿拉伯聚糖的检测 |
K-ASNAM | L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒 | 用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析 |
K-ASPTM | 阿斯巴甜检测试剂盒 | 专业用于测定饮料和食品中阿斯巴甜含量,操作简单 |
K-BETA3 | β-淀粉酶检测试剂盒 | 适用于麦芽粉中β-淀粉酶的测定 |
K-BGLU | 混合键β-葡聚糖检测试剂盒 | 测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量 |
K-CERA | α-淀粉酶检测试剂盒 | 谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定 |
K-CITR | 柠檬酸检测试剂盒 | 快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量 |
K-DLATE | 乳酸快速检测试剂盒 | 快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量 |
K-EBHLG | 酵母β-葡聚糖酶检测试剂盒 | 用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖 |
K-ETSULPH | 总亚硫酸检测试剂盒 | 测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法 |
K-FRGLMQ | D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒 | 适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。 |
K-FRUC | 果聚糖检测试剂盒 | 含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。 |
K-FRUGL | D-果糖/D-葡萄糖检测试剂盒 | 对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。 |
K-GALM | 半乳甘露聚糖检测试剂盒 | 食品和植物产品中半乳甘露聚糖的含量检测 |
K-GLUC | D-葡萄糖[GOPOD]检测试剂盒 | 谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。 |
K-GLUHK | D-葡萄糖[HK]检测试剂盒 | 植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。 |
K-GLUM | 葡甘聚糖检测试剂盒 | 植物和食品中葡甘聚糖的含量测定。 |
K-INTDF | 总膳食纤维检测试剂盒 | 总膳食纤维特定检测和分析 |
K-LACGAR | 乳糖/D-半乳糖快速检测试剂盒 | 用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖 |
K-LACSU | 乳糖/蔗糖/D-葡萄糖检测试剂盒 | 混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定 |
K-LACTUL | 乳果糖检测试剂盒 | 特异性、快速和灵敏测量奶基样品中乳果糖含量 |
K-MANGL | D-甘露糖/D-果糖/D-葡萄糖检测试剂盒 | 适合测定植物产品和多糖酸性水解产物中D-甘露糖含量 |
K-MASUG | 麦芽糖/蔗糖/D-葡萄糖检测试剂盒 | 在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测 |
K-PECID | 胶质识别检测试剂盒 | 食品配料中果胶的鉴别 |
K-PHYT | 植酸(总磷)检测试剂盒 | 食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析 |
K-PYRUV | 丙酮酸检测试剂盒 | 在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析 |
K-RAFGA | 棉子糖/D-半乳糖检测试剂盒 | 快速测量植物材料和食品中棉子糖和半乳糖含量 |
K-RAFGL | 棉子糖/蔗糖/D-半乳糖检测试剂盒 | 分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定 |
K-SDAM | 淀粉损伤检测试剂盒 | 谷物面粉中淀粉损伤的检测和分析 |
K-SUCGL | 蔗糖/D-葡萄糖检测试剂盒 | 饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析 |
K-SUFRG | 蔗糖/D-果糖/D-葡萄糖检测试剂盒 | 适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定 |
K-TDFR | 总膳食纤维检测试剂盒 | 总膳食纤维检测 |
K-TREH | 海藻糖检测试剂盒 | 快速、可靠地检测食品、饮料和其它物料中海藻糖含量 |
K-URAMR | 尿素/氨快速检测试剂盒 | 适用于水、饮料、乳制品和食品中尿素和氨的快速测定 |
K-URONIC | D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒 | 简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸) |
K-XYLOSE | D-木糖检测试剂盒 | 简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量 |
K-YBGL | Beta葡聚糖[酵母和蘑菇]检测试剂盒 | 检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量 |
新品排行榜
1
Megazyme/Amyloglucosidase (Asper...
2
Megazyme/α-Amylase (Bacill...
3
Megazyme/Arabinoxylan (Wheat Flo...
4
Megazyme/D-Xylose Assay Kit/K-XY...
5
Megazyme/MegaQuant Colorimeter T...
6
Megazyme/Wheat Arabinoxylan (enz...
7
Megazyme/Cellazyme C Tablets/T-C...
8
Megazyme/Amyloglucosidase (Asper...
9
Megazyme/Amylazyme HY Tablets/T-...
10
Megazyme/CM-Pachyman/P-CMPAC/4 g...
文章排行榜
1
Megazyme/Total Starch Assay Kit (AA/AMG) /K-TSTA-100A/100 assays
2
膳食纤维总量检测试剂盒
3
K-TSTA,淀粉总量检测试剂盒,Total Starch (AA/AMG) Assay Kit
4
Megazyme/Phytic Acid (Total Phosphorus) Assay Kit/K-PHYT/50 assays per kit
5
Megazyme/Protease (Subtilisin A from Bacillus licheniformis)/E-BSPRT-10ML/0.5 grams - 10ML
6
Megazyme/AZCL-Pachyman/I-AZPAC/3 grams
7
Megazyme/AZCL-Curdlan (fine)/I-AZCURF/3 grams
8
Megazyme/Total Dietary Fiber Controls/K-TDFC/Sufficient for 6 Controls
9
Bit_试剂_Equl意果_易扩_AdvancedBioMatrix_DivBio_Drummond_Genie_Glascol_Megazyme_Phadebas_Worthington
10
Harlan Bioproducts_试剂_Equl意果_易扩_AdvancedBioMatrix_DivBio_Drummond_Genie_Glascol_Megazyme_Phadebas_Worthington