提醒:代购产品,无质量问题不接受退换货,下单前请仔细核对信息。下单后请及时联系客服 核对商品价格,订单生效后再付款。
Megazyme/D-Xylose Assay Kit/K-XYLOSE/100 assays (manual) / 1000 assays (microplate) / 1300 assays (auto-analyser)
价格:

自营商城

解放采购

正品保障

及时交付

厂家直采

一站服务

货号:
品牌:
会员服务:
尊享会员价
贵宾专线
运费优惠
闪电退款
福利优惠
上门换新
友情提示
以上价格仅为参考,请联系客服询价。
免费咨询热线
4000-520-616
产品说明
TheD-Xylosetestkitisanovelmethodforthespecific,convenientandrapidmeasurementandanalysisofD-xyloseinplantextracts,culturemedia/supernatantsandothermaterials.Suitableformanual,auto-analyserandmicroplateformats.TheinfluenceofAspergillusnigertranscriptionfactorsAraRandXlnRinthegeneexpressionduringgrowthinD-xylose,L-arABInoseandsteam-explodedsugarcanebagasse.deSouza,W.R.,Maitan-Alfenas,G.P.,deGouvêa,P.F.,Brown,N.A.,Savoldi,M.,Battaglia,E.,Goldman,M.H.S.,deVries,R.P.&Goldman,G.H.(2013).FungalGeneticsandBIOLOGy,60,29-45.LinktoArticleReadAbstractTheinterestintheconversionofplantbiomasstorenewablefuelssuchasbioethanolhasledtoanincreasedinvestigationintotheprocessesregulatingbiomasssaccharification.ThefilamentousfungusAspergillusnigerisanimportantmicroorganismcapableofproducingawidevarietyofplantbiomassdegrADIngenzymes.InA.nigerthetranscriptionalactivatorXlnRanditsclosehomolog,AraR,controlsthemain(hemi-)cellulolyticsystemresponsIBLeforplantpolysaccharidedegradation.Sugarcaneisusedworldwideasafeedstockforsugarandethanolproduction,whilethelignocellulosicresidualbagassecanbeusedindifferentindustrialapplications,includingethanolproduction.Theuseofpentosesugarsfromhemicellulosesrepresentsanopportunitytofurtherincreaseproductionefficiencies.Inthepresentstudy,wedescribeaglobalgeneexpressionanalysisofA.nigerXlnR-andAraR-deficientmutantstrains,grownonaD-xylose/L-arabinosemonosaccharidemixtureandsteam-explodedsugarcanebagasse.DifferentgenesetsofCAZyenzymesandsugartransporterswereshowntobeindividuallyorduallyregulatedbyXlnRandAraR,withXlnRappearingtobethemajorregulatoroncomplexpolysaccharides.Ourstudycontributestounderstandingofthecomplexregulatorymechanismsresponsibleforplantpolysaccharide-degradinggeneexpression,andopensnewpossibilitiesfortheengineeringoffungiabletoproducemoreefficientenzymaticcocktailstobeusedinbiofuelproduction.Ahigh-throughputplatformforscreeningmilligramquantitiesofplantbiomassforlignocellulosedigestibility.Santoro,N.,Cantu,S.L.,Tornqvist,C.E.,Falbel,T.G.,Bolivar,J.L.,Patterson,S.E.,Pauly,M.&Walton,J.D.(2010).BioEnergyresearch,3(1),93-102.LinktoArticleReadAbstractThedevelopmentofaviablelignocellulosicethanolindustryrequiresmultipleimprovementsintheprocessofconvertingbiomasstoethanol.Akeystepistheimprovementoftheplantsthataretobeusedasbiomassfeedstocks.Tofacilitatetheidentificationandevaluationoffeedstockplants,itwouldbeusefultohaveamethodtoscreenlargenumbersofindividualplantsforenhanceddigestibilityinresponsetocombinationsofspecificpretreatmentsandenzymes.Thispaperdescribesahigh-throughputdigestibilityplatform(HTDP)forscreeningcollectionsofgermplasmforimproveddigestibility,whichwasdevelopedundertheaUSPicesoftheDepartmentofEnergy-GreatLakesBioenergyResearchCenter(DOE-GLBRC).Akeycomponentofthisplatformisacustom-designedworkstationthatcangrindanddispense1–5mgquantitiesofmorethan250differentplanttissuesamplesin16h.Theotherstepsintheprocessing(pretreatment,enzymedigestion,andsugaranalysis)havealsobeenlargelyautomatedandrequire36h.Theprocessisadaptabletodiverseacidicandbasic,low-temperaturepretreatments.TotalthroughputoftheHTDPis972independentbiomasssamplesperweek.Validationoftheplatformwasperformedonbrownmidribmutantsofmaize,whichareknowntohaveenhanceddigestibility.Additionalvalidationwasperformedbyscreeningapproximately1,200ArabidopsismutantlineswithT-DNAinsertionsingenesknownorsuspectedtobeinvolvedincellwallbiosynthesis.Severallinesshowedhighlysignificant(p Fastenzymaticsaccharificationofswitchgrassafterpretreatmentwithionicliquids.Zhao,H.,Baker,G.A.&Cowins,J.V.(2010).Biotechnologyprogress,26(1),127-133.LinktoArticleReadAbstractThepretreatmentofcelluloseusingionicliquids(ILs)hasbeenshowntobeaneffectivemethodforimprovingtheenzymatichydrolysisofcellulose;thistechniqueaffordsafastandcompletesaccharificationofcelluloseintoreducingsugars(Dadietal.,BiotechnolBioeng.2006;95:904–910;LiuandChen,ChineseSciBull.2006;51:2432–2436;Zhaoetal.,JBiotechnol.2009;139:47–54).Motivatedbytheseadvances,thisstudyexaminestheeffectofIL-pretreatmentontheenzymatichydrolysisofpurifiedxylan(asamodelsystemofhemicellulose)andswitchgrass(asareallignocellulose).TheIL-pretreatmentresultedinnoimprovementinthehydrolysisofxylan.Thelikelyreasonisthatpurexylanhasalowdegreeofpolymerization(DP),andisreadilybiodegradedevenwithoutanypretreatment.However,inrealcellulosicmaterials(suchasswitchgrass),xylanisentrappedwithinthecellulosicmatrix,andcannotbeconvenientlyaccessedbyenzymes.OurdatademonstratethattheIL-pretreatmentofswitchgrasssignificantlyimprovedtheenzymaticsaccharificationofbothcellulose(96%D-glucoseyieldin24h)andxylan(63%D-xyloseyieldin24h).ThecompositionalanalysisofswitchgrasssuggestsalowerlignincontentafterIL-pretreatment.Inaddition,theinfraredspectrumofregeneratedswitchgrassindicatesalowersubstratecrystallinity,whereastheenzymeadsorptionisothermfurtherimpliesthattheregeneratedsubstrateismoreaccessibletoenzymes.ThisstudyhasfurtherconfirmedthatIL-pretreatmentisaneffectivetoolinenhancingtheenzymatichydrolysisofcellulosicbiomass,andallowingamorecompletesaccharification.SwitchingClostridiumacetobutylicumtoanethanolproducerbydisruptionofthebutyrate/butanolfermentativepathway.Lehmann,D.&Lütke-Eversloh,T.(2011).MetabolicEngineering,13(5),464-473.LinktoArticleReadAbstractSolventogenicclostridiaarewell-knownsincealmostacenturyduetotheiruniquecapabilitytobiosynthesizethesolventsacetoneandbutanol.Basedonrecentlydevelopedgeneticengineeringtools,atargeted3-hydroxybutyryl-CoAdehydrogenase(HBD)-negativemutantofClostridiumacetobutylicumwasgenerated.Interestingly,theentirebutyrate/butanol(C4)metabolicpathwayofC.acetobutylicumcouldbeinactivatedwithoutaseveregrowthlimitationandindicatedthegeneralfeasibilitytomanipulatethecentralfermentativemetabolismforproductpatternalteration.CellextractsofthemutantC.acetobutylicumhbd::int(69)revealedclearlyreducedthiolase,HbdandcrotonasebutincreasedNADH-dependentalcoholdehydrogenaseenzymeactivitiesascomparedtothewildtypestrain.NeitherbutyratenorbutanolweredetectedinculturesofC.acetobutylicumhbd::int(69),andtheformationofmolecularhydrogenwassignificantlyreduced.Insteadupto16and20g/lethanolwereproducedinglucoseandxylosebatchcultures,respectively.Furthersugaradditioninglucosefed-batchfermentationsincreasedtheethanolproductiontoafinaltiterof33g/l,resultinginanethanoltoglucoseyieldof0.38g/g.Processcharacterizationandinfluenceofalternativecarbonsourcesandcarbon-to-nitrogenratioonorganicacidproductionbyAspergillusoryzaeDSM1863.Ochsenreither,K.,Fischer,C.,Neumann,A.&Syldatk,C.(2014).AppliedMicrobiologyandBiotechnology,98(12),5449-5460.LinktoArticleReadAbstractL-MalicacidandfumaricacidareC4dicarboxylicorganicacidsandconsideredaspromisingchemicalbuildingblocks.Theycanbeappliedasfoodpreservativesandacidulantsinrustremovalandaspolymerizationstarterunits.MoldsofthegenusAspergillusareabletoproducemalicacidinlargequantitiesfromglucoseandothercarbonsources.InordertoenhancetheproductionpotentialofAspergillusoryzaeDSM1863,productionandconsumptionratesinanestablishedbioreactorbatch-processbasedonglucoseweredetermined.At35°C,upto42g/Lmalicacidwasproducedina168-hbatchprocesswithfumaricacidasaby-product.Inprolongedshakingflaskexperiments(353h),thesuitabilityofthealternativecarbonsourcesxyloseandglycerolatacarbon-to-nitrogen(C/N)ratioof200:1andtheinfluenceofdifferentC/Nratiosinglucosecultivationsweretested.Whenusingglucose,58.2g/Lmalicacidand4.2g/Lfumaricacidwereproduced.Whenapplyingxyloseorglycerol,bothorganicacidsareproducedbuttheformationofmalicaciddecreasedto45.4and39.4g/L,respectively.Whereasthefumaricacidconcentrationwasnotsignificantlyalteredwhencultivatingwithxylose(4.5g/L),itisclearlyenhancedbyusingglycerol(9.3g/L).Whenusingglucoseasacarbonsource,anincreaseordecreaseoftheC/Nratiodidnotinfluencemalicacidproductionbuthadanenormousinfluenceonfumaricacidproduction.ThehighestfumaricacidconcentrationsweredeterminedatthehighestC/Nratio(300:1,8.44g/L)andlowestatthelowestC/Nratio(100:1,0.7g/L).Characterizationofnewlyisolatedoleaginousyeasts-Cryptococcuspodzolicus,TrichosporonporosumandPichiasegobiensis.Schulze,I.,Hansen,S.,Großhans,S.,Rudszuck,T.,Ochsenreither,K.,Syldatk,C.&Neumann,A.(2014).AMBExpress,4,24.LinktoArticleReadAbstractTheyeaststrainsCryptococcuspodzolicus,TrichosporonporosumandPichiasegobiensiswereisolatedfromsoilsamplesandidentifiedasoleaginousyeaststrainsbeneficialfortheestablishmentofmicrobialproductionprocessesforsustainablelipidproductionsuitableforseveralindustrialapplications.WhenculturedinbioreactorswithglucoseasthesolecarbonsourceC.podzolicusyielded31.8%lipidperdrybiomassat20°C,whileT.porosumyielded34.1%at25°CandP.segobiensis24.6%at25°C.Theseamountscorrespondtolipidconcentrationsof17.97g/L,17.02g/Land12.7g/Landvolumetricproductivitiesof0.09g/Lh,0.1g/Lhand0.07g/Lh,respectively.DuringthecultureofC.podzolicus30g/lgluconicacidwasdetectedasby-productintheculturebrothand12g/LgluconicacidinT.porosumculture.Theproductionofgluconicacidwaseliminatedforbothstrainswhenglucosewassubstitutedbyxyloseasthecarbonsource.Usingxyloselipidyieldswere11.1g/Land13.9g/L,correspondingto26.8%and33.4%lipidperdrybiomassandavolumetricproductivityof0.07g/Lhand0.09g/Lh,forC.podzolicusandT.porosumrespectively.Thefattyacidprofileanalysisshowedthatoleicacidwasthemaincomponent(39.6to59.4%)inallthreestrainsandcouldbeapplicableforbiodieselproduction.Palmiticacid(18.4to21.1%)andlinolenicacid(7.5to18.7%)arevaluableforcosmeticapplications.P.segobiensishadaconsiderableamountofpalmitoleicacid(16%content)andmaybesuitableformedicalapplications.CharacterisationofdietaryfibrecomponentsincerealsandlegumesusedinSerbiandiet.Dodevska,M.S.,Djordjevic,B.I.,Sobajic,S.S.,Miletic,I.D.,Djordjevic,P.B.&Dimitrijevic-Sreckovic,V.S.(2013).Foodchemistry,141(3),1624-1629.LinktoArticleReadAbstractThetypicalSerbiandietischaracterisedbyhighintakeofcerealproductsandalsolegumesareoftenused.Thecontentoftotalfibreaswellascertainfibrefractionswasdeterminedincereals,cerealproducts,andcookedlegumes.Thecontentoftotalfibreincookedcerealsandcerealproductsrangedfrom2.5to20.8g/100g,andincookedlegumesfrom14.0to24.5g/100g(ondrymatterbasis).Distributionofanalysedfibrefractionsandtheirquantitiesdifferedsignificantlydependingonfoodgroups.Fructansandarabinoxylanswerethemostsignificantfibrefractionsinryeflakes,andβ-glucaninoatflakes,celluloseandresistantstarchwerepresentinsignificantamountsinpeasandkidneybeans.Whenthesizeofregularfoodportionswastakenintoconsideration,thebestsourcesoftotaldietaryfibrewerepeasandkidneybeans(morethan11g/serving).Thesamefoodswerethebestsourcesofcellulose(4.98and3.56g/serving)andresistantstarch(3.90and2.83g/serving).Highintakeofarabinoxylansandfructanscouldbeaccomplishedwithcookedwheat(3.20gand1.60g/serving,respectively).Oat(1.39g/serving)andbarleyflakes(1.30g/serving)canberecommendedasthebestsourcesofβ-glucan.KeyresiduesinsubsiteFplayacriticalroleintheactivityofPseudomonasfluorescenssubspeciescellulosaxylanaseAagainstxylooligosaccharidesbutnotagainsthighlypolymericsubstratessuchasxylan.Charnock,S.J.,Lakey,J.H.,Virden,R.,Hughes,N.,Sinnott,M.L.,Hazlewood,G.P.,Pickersgill,R.&Gilbert,H.J.(1997).TheJournalofBiologicalChemistry,272(5),2942-2951.LinktoArticleReadAbstractInapreviousstudycrystalsofPseudomonasfluorescenssubspeciescellulosaxylanaseA(XYLA)containingxylopentaoserevealedthattheterminalnonreducingendglycosidicbondoftheoligosaccharidewasadjacenttothecatalyticresiduesoftheenzyme,suggestingthatthexylanasemayhaveanexo-modeofaction.However,aclusterofconservedresiduesinthesubstratebindingcleftindicatedthepresenceofanadditionalsubsite,designatedsubsiteF.AnalysisofthebiochemicalpropertiesofXYLArevealedthattheenzymewasatypicalendo-β1,4-xylanase,providingsupportfortheexistenceofsubsiteF.Thethree-dimensionalstructureoffourfamily10xylanases,includingXYLA,revealedseveralhighlyconservedresiduesthatareonthesurfaceoftheactivesitecleft.Toinvestigatetheroleofsomeoftheseresidues,appropriatemutationsofXYLAwereconstructed,andthebiochemicalpropertiesofthemutatedenzymeswereevaluated.N182Ahydrolyzedxylotetraosetoapproximatelyequalmolarquantitiesofxylotriose,xylobiose,andxylose,whilenativeXYLAcleavedthesubstratetoprimarilyxylobiose.ThesedatasuggestthatN182islocatedattheCsiteoftheenzyme.N126AandK47Awerelessactiveagainstxylanandaryl-β-glycosidesthannativeXYLA.ThepotentialrolesofAsn-126andLys-47inthefunctionofthecatalyticresiduesarediscussed.E43AandN44A,whicharelocatedintheFsubsiteofXYLA,retainedfullactivityagainstxylanbutweresignificantlylessactivethanthenativeenzymeagainstoligosaccharidessmallerthanxyloseptaose.ThesedatasuggestthattheprimaryroleoftheFsubsiteofXYLAistopreventsmalloligosaccharidesfromformingnonproductiveenzyme-substratecomplexes.Simultaneousuptakeoflignocellulose‐basedmonosaccharidesbyEscherichiacoli.Jarmander,J.,Hallström,B.M.&Larsson,G.(2014).BiotechnologyandBioengineering,111(6),1108-1115.LinktoArticleReadAbstractLignocellulosicwasteisanaturallyabundantbiomassandisthereforeanattractivematerialtouseinsecondgenerationbiorefineries.Microbialgrowthonthemonosaccharidespresentinhydrolyzedlignocelluloseishoweverassociatedwithseveralobstacleswhereofoneisthelackofsimultaneousuptakeofthesugars.WehavestudiedtheaerobicgrowthofEscherichiacolionD-glucose,D-xylose,andL-arabinoseandforsimultaneousuptaketooccur,boththecarboncataboliterepressionmechanism(CCR)andtheAraCrepressionofxyloseuptakeandmetabolismhadtoberemoved.ThestrainAF1000isaMC4100derivativethatisonlyabletoassimilatearabinoseafteraconsiderablelagphase,whichisunsuitableforcommercialproduction.ThisstrainwassuccessfullyadaptedtogrowthonL-arabinoseandthisledtosimultaneousuptakeofarabinoseandxyloseinadiauxicgrowthmodefollowingglucoseconsumption.Inthisstrain,adeletioninthephosphoenolpyruvate:phosphotransferasesystem(PTS)forglucoseuptake,theptsGmutation,wasintroduced.Theresultingstrain,PPA652arasimultaneouslyconsumedallthreemonosaccharidesatamaximumspecificgrowthrateof0.59 h-1,55%higherthanfortheptsGmutantalone.Also,noresidualsugarwaspresentinthecultivationmedium.ThepotentialofPPA652araisfurtheracknowledgedbytheperformanceofAF1000duringfed-batchprocessingonamixtureofD-glucose,D-xylose,andL-arabinose.Theconclusionisthatwithouttheremovalofbothlayersofcarbonuptakecontrol,thisprocessresultsinaccumulationofpentosesandleadstoareductionofthespecificgrowthrateby30%.PenicilliumpurpurogenumproducestwoGHfamily43enzymeswithβ-xylosidaseactivity,onemonofunctionalandtheotherbifunctional:Biochemicalandstructuralanalysesexplainthedifference.Ravanal,M.C.,Alegría-Arcos,M.,Gonzalez-Nilo,F.D.&Eyzaguirre,J.(2013).ArchivesofBiochemistryandBiophysics,540(1-2),117-124.LinktoArticleReadAbstractβ-Xylosidasesparticipateinxylanbiodegradation,liberatingxylosefromthenon-reducingendofxylooligosaccharides.ThefungusPenicilliumpurpurogenumsecretestwoenzymeswithβ-D-xylosidaseactivitybelongingtofamily43oftheglycosylhydrolases.Oneoftheseenzymes,arabinofuranosidase3(ABF3),isabifunctionalα-L-arabinofuranosidase/xylobiohydrolaseactiveonp-nitrophenyl-α-L-arabinofuranoside(pNPAra)andp-nitrophenyl-β-D-xylopyranoside(pNPXyl)withaKMof0.65and12mM,respectively.Theother,β-D-xylosidase1(XYL1),isonlyactiveonpNPXylwithaKMof0.55mM.Thexyl1genewasexpressedinPichiapastoris,purifiedandcharacterized.Thepropertiesofbothenzymeswerecomparedinordertoexplaintheirdifferenceinsubstratespecificity.Structuralmodelsforeachproteinwerebuiltusinghomologymodelingtools.Moleculardockingsimulationswereusedtoanalyzetheinteractionsdefiningtheaffinityoftheproteinstobothligands.Thestructuralanalysisshowsthatactivecomplexes(ABF3–pNPXyl,ABF3–pNPAraandXYL1–pNPXyl)possessspecificinteractionsbetweensubstratesandcatalyticresidues,whichareabsentintheinactivecomplex(XYL1–pNPAra),whileotherinteractionswithnon-catalyticresiduesarefoundinallcomplexes.pNPAraisacompetitiveinhibitorforXYL1(Ki=2.5mM),confirmingthatpNPAradoesbindtotheactivesitebutnottothecatalyticresidues.Developmentandtestingofanovellab-scaledirectsteam-injectionapparatustohydrolysemodelandsalinecropslurries.Guglielmo,S.,Dalessandro,A.,Maurizio,P.,Silvia,C.,Maurizio,R.,Riccardo,V.&Moresi,M.(2012).JournalofBiotechnology,157(4),590-597.LinktoArticleReadAbstractInthiswork,anovellaboratory-scaledirectsteam-injectionapparatus(DSIA)wasdevelopedtoovercomethemaindrawbackoftheconventionalbatch-drivenlabrigs,namelythelongtimeneededtoheatfiberslurryfromroomtoreactiontemperaturesgreaterthan150°C.Thenovelapparatusmainlyconsistedofthreeunits:(i)amechanically-stirredbioreactorwheresaturatedsteamat5–30barcanbeinjected;(ii)anautomaticon–offvalvetoflashsuddenlythereactionmediumafteraprefixedreactiontime;(iii)acycloneseparatortorecoverthereactedslurry.Thissystemwastestedusing0.75dm3ofanaqueoussolutionofH2SO4(0.5%,v/v)enrichedwith50kgm-3ofeithercommercialparticlesofAvicel®andLarchxylanor0.5mmsievedparticlesofTamarixjordanis.Eachslurrywasheatedtoabout200°Cbyinjectingsteamat28barfor90s.Theprocessefficiencywasassessedbycomparingthedissolutiondegreeofsuspendedsolid(YS),aswellasxylose(YX),glucose(YG),andfurfural(YF)yields,withthoseobtainedinaconventionalsteamautoclaveat130°Cfor30or60min.TreatmentofT.jordanisparticlesinDSIAresultedinYSandYGvaluesquitesimilartothoseobtainedinthesteamautoclaveat130°Cfor60min,butinalessefficienthemicellulosesolubilization.Alimitedoccurrenceofpentosedegradationproductswasobservedinbothequipments,suggestingthathydrolysispredominatedoverdegradationreactions.ThesusceptibilityoftheresidualsolidfractionsfromDSIAtreatmenttoaconventional120hlongcellulolytictreatmentusinganenzymeloadingof5.4FPUg-1wasmarkedlyhigherthanthatofsampleshydrolysedinthesteamautoclave,theircorrespondingglucoseyieldsbeingequalto0.94and0.22gpergramofinitialcellulose,respectively.Thus,T.jordanisresultedtobeavaluablesourceofsugarsforbioethanolproductionasprovedbypreliminarytestsinthenovellabrigdevelopedhere.SynergisticeffectofAspergillusnigerandTrichodermareeseienzymesetsonthesaccharificationofwheatstrawandsugarcanebagasse.vandenBrink,J.,Maitan-Alfenas,G.P.,Zou,G.,Wang,C.,Zhou,Z.,Guimarães,V.M.&deVries,R.P.(2014).BiotechnologyJournal,9(10),1329-1338.LinktoarticleReadAbstractPlant-degradingenzymescanbeproducedbyfungionabundantlyavailablelow-costplantbiomass.However,enzymessetsaftergrowthoncomplexsubstratesneedtobebetterunderstood,especiallywithemphasisondifferencesbetweenfungalspeciesandtheinfluenceofinhibitorycompoundsinplantsubstrates,suchasmonosaccharides.Inthisstudy,AspergillusnigerandTrichodermareeseiwereevaluatedfortheproductionofenzymesetsaftergrowthontwo“secondgeneration”substrates:wheatstraw(WS)andsugarcanebagasse(SCB).A.nigerandT.reeseiproduceddifferentsetsof(hemi-)cellulolyticenzymesaftergrowthonWSandSCB.ThiswasreflectedinanoverallstrongsynergisticeffectinreleasingsugarsduringsaccharificationusingA.nigerandT.reeseienzymesets.T.reeseiproducedlesshydrolyticenzymesaftergrowthonnon-washedSCB.Thesensitivitytonon-washedplantsubstrateswasnotreducedbyusingCreA/Cre1mutantsofT.reeseiandA.nigerwithadefectivecarboncataboliterepression.TheimportanceofremovingmonosaccharidesforproducingenzymeswasfurtherunderlinedbythedecreaseinhydrolyticactivitieswithincreasedglucoseconcentrationsinWSmedia.ThisstudyshowedtheimportanceofremovingmonosaccharidesfromtheenzymeproductionmediaandcombiningT.reeseiandA.nigerenzymesetstoimproveplantbiomasssaccharification.Co-fermentationofacetateandsugarsfacilitatingmicrobiallipidproductiononacetate-richbiomasshydrolysates.Gong,Z.,Zhou,W.,Shen,H.,Yang,Z.,Wang,G.,Zuo,Z.,Hou.Y.&Zhao,Z.K.(2016).Bioresourcetechnology,207,102-108.LinktoArticleReadAbstractTheprocessoflignocellulosicbiomassroutinelyproducesastreamthatcontainssugarsplusvariousamountsofaceticacid.Asacetateisknowntoinhibitthecultureofmicroorganismsincludingoleaginousyeasts,littleattentionhasbeenpaidtoexplorelipidproductiononmixturesofacetateandsugars.HerewedemonstratedthattheyeastCryptococcuscurvatuscaneffectivelyco-fermentacetateandsugarsforlipidproduction.Whenmixturesofacetateandglucosewereapplied,C.curvatusconsumedbothsubstratessimultaneously.Similarphenomenawerealsoobservedforacetateandxylosemixtures,aswellasacetate-richcornstoverhydrolysates.Moreinterestingly,thereplacementofsugarwithequalamountofacetateascarbonsourceaffordedhigherlipidtitreandlipidcontent.Thelipidproductshadfattyacidcompositionalprofilessimilartothoseofcocoabutter,suggestingtheirpotentialforhighvalue-addedfatsandbiodieselproduction.Thisco-fermentationstrategyshouldfacilitatelipidproductiontechnologyfromlignocelluloses.Effectsofanacid/alkalinetreatmentonthereleaseofantioxidantsandcellulosefromdifferentagro-foodwastes.Vadivel,V.,Moncalvo,A.,Dordoni,R.&Spigno,G.(2017).WasteManagement,64,305-314.LinktoArticleReadAbstractThepresentinvestigationwasaimedtoevaluatethereleaseofbothantioxidantsandcellulosicfibrefromdifferentagro-foodwastes.Cost-effectiveandeasilyavailableagro-foodresidues(brewers’spentgrains,hazelnutshells,orangepeelsandwheatstraw)wereselectedandsubmittedtoadouble-stepacid/alkalinefractionationprocess.Theobtainedacidandalkalineliquorswereanalysedfortotalphenolscontentandantioxidantcapacity.Thefinalfibreresiduewasanalysedforthecellulose,ligninandhemicellulosecontent.Thetotalphenolscontentandantioxidantcapacityoftheacidliquorswerehigherthanthealkalinehydrolysates.Orangepeelsandwheatstrawgave,respectively,thehighest(19.70±0.68mg/gdm)andthelowest(4.70±0.29mg/gdm)totalphenolsrelease.Correlationbetweenantioxidantcapacityoftheliquorsandtheirorigindependedontheanalyticalassayusedtoevaluateit.Alltheacidliquorswerealsorichinsugardegradationproducts(mainlyfurfural).HPLCanalysisrevealedthatthemostabundantphenoliccompoundintheacidliquorswasvanillinforbrewers’spentgrains,hazelnutshellsandwheatstraw,andp-hydroxybenzoicacidfororangepeels.Wheatstrawservedasthebestrawmaterialforcelluloseisolation,providingafinalresiduewithahighcellulosecontent(84%)whichcorrespondedto45%oftheoriginalcellulose.Theappliedprocessremovedmorethan90%ofthehemicellulosefractioninallthesamples,whiledelignificationdegreerangedfrom67%(inhazelnutshells),to93%(inbrewers’spentgrains).Itwasnotpossibletoselectauniquerawmaterialforthereleaseofhighestlevelsofbothtotalphenolsandcellulose.UV-methodforthedeterminationofD-XyloseinfermentationbrothsandhydrolysatesofplantmaterialandpolysaccharidesPrinciple:     (xylosemutarotase)(1)α-D-Xylose↔β-D-xylose          (β-xylosedehydrogenase)(2)β-D-Xylose+NAD+→D-xylonicacid+NADH+H+Kitsize:                         *100assays(manual)/1000(microplate)                                         /1300(auto-analyser)* Thenumberofmanualtestsperkitcanbedoubledifallvolumesarehalved. ThiscanbereadilyaccommodatedusingtheMegaQuantTM WaveSpectrophotometer(D-MQWAVE).Method:                          Spectrophotometricat340nmReactiontime:                  ~6minDetectionlimit:                0.7mg/LApplicationexamples:AnalysisofD-xyloseinfermentationbrothsandhydrolysatesofplantmaterialandpolysaccharidesMethodrecognition:   NovelmethodAdvantagesVerycosteffective Allreagentsstablefor>2yearsafterpreparation Onlyenzymatickitavailable Rapidreaction(~6min) Mega-Calc™softwaretoolisavailablefromourwebsiteforhassle-freerawdataprocessing Standardincluded Suitableformanual,microplateandauto-analyserformats

Megazyme品牌产品简介

来源:作者:人气:2149发表时间:2016-05-19 10:59:00【  
Megazyme检测试剂盒 - 用于食品、饲料、乳制品、葡萄酒分析
Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
Megazyme检测试剂盒产品◆ 检测试剂盒
◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号 中文品名 用途
K-ACETAF 乙酸[AF法]检测试剂盒 酶法定量分析乙酸最广泛使用的方法
K-ACHDF 可吸收糖/膳食纤维检测试剂盒 酒精沉淀法测定膳食纤维
K-AMIAR 氨快速检测试剂盒 用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。
K-AMYL 直链淀粉/支链淀粉检测试剂盒 谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测
K-ARAB 阿拉伯聚糖检测试剂盒 果汁浓缩液中阿拉伯聚糖的检测
K-ASNAM L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒 用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析
K-ASPTM 阿斯巴甜检测试剂盒 专业用于测定饮料和食品中阿斯巴甜含量,操作简单
K-BETA3 β-淀粉酶检测试剂盒 适用于麦芽粉中β-淀粉酶的测定
K-BGLU 混合键β-葡聚糖检测试剂盒 测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量
K-CERA α-淀粉酶检测试剂盒 谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定
K-CITR 柠檬酸检测试剂盒 快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量
K-DLATE 乳酸快速检测试剂盒 快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量
K-EBHLG 酵母β-葡聚糖酶检测试剂盒 用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖
K-ETSULPH 总亚硫酸检测试剂盒 测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法
K-FRGLMQ D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒 适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。
K-FRUC 果聚糖检测试剂盒 含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。
K-FRUGL D-果糖/D-葡萄糖检测试剂盒 对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。
K-GALM 半乳甘露聚糖检测试剂盒 食品和植物产品中半乳甘露聚糖的含量检测
K-GLUC D-葡萄糖[GOPOD]检测试剂盒 谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUHK D-葡萄糖[HK]检测试剂盒 植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUM 葡甘聚糖检测试剂盒 植物和食品中葡甘聚糖的含量测定。
K-INTDF 总膳食纤维检测试剂盒 总膳食纤维特定检测和分析
K-LACGAR 乳糖/D-半乳糖快速检测试剂盒 用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖
K-LACSU 乳糖/蔗糖/D-葡萄糖检测试剂盒 混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定
K-LACTUL 乳果糖检测试剂盒 特异性、快速和灵敏测量奶基样品中乳果糖含量
K-MANGL D-甘露糖/D-果糖/D-葡萄糖检测试剂盒 适合测定植物产品和多糖酸性水解产物中D-甘露糖含量
K-MASUG 麦芽糖/蔗糖/D-葡萄糖检测试剂盒 在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测
K-PECID 胶质识别检测试剂盒 食品配料中果胶的鉴别
K-PHYT 植酸(总磷)检测试剂盒 食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析
K-PYRUV 丙酮酸检测试剂盒 在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析
K-RAFGA 棉子糖/D-半乳糖检测试剂盒 快速测量植物材料和食品中棉子糖和半乳糖含量
K-RAFGL 棉子糖/蔗糖/D-半乳糖检测试剂盒 分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定
K-SDAM 淀粉损伤检测试剂盒 谷物面粉中淀粉损伤的检测和分析
K-SUCGL 蔗糖/D-葡萄糖检测试剂盒 饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析
K-SUFRG 蔗糖/D-果糖/D-葡萄糖检测试剂盒 适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定
K-TDFR 总膳食纤维检测试剂盒 总膳食纤维检测
K-TREH 海藻糖检测试剂盒 快速、可靠地检测食品、饮料和其它物料中海藻糖含量
K-URAMR 尿素/氨快速检测试剂盒 适用于水、饮料、乳制品和食品中尿素和氨的快速测定
K-URONIC D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒 简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸)
K-XYLOSE D-木糖检测试剂盒 简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量
K-YBGL Beta葡聚糖[酵母和蘑菇]检测试剂盒 检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量
客服在线
service-logo
已有 人查看该问题
tel
全国免费服务热线
4000-520-616
微信公众号
关注我们
手机扫码,关注动态