

提醒:代购产品,无质量问题不接受退换货,下单前请仔细核对信息。下单后请及时联系客服
核对商品价格,订单生效后再付款。
Megazyme/α-Amylase (Bacillus licheniformis) /E-BLAAM-A-100ML/100mL - 750 units/mL (ANKOM)
价格:
自营商城
解放采购
正品保障
及时交付
厂家直采
一站服务
货号:
品牌:
会员服务:
尊享会员价
贵宾专线
运费优惠
闪电退款
福利优惠
上门换新
友情提示
以上价格仅为参考,请联系客服询价。
免费咨询热线
4000-520-616
产品说明
Highpurityα-Amylase(Bacilluslicheniformis)foruseinresearch,biochemicalenzymeassaysandinvitrodiagnosticanalysis.EC3.2.1.1CAZyFamily:GH13CAS:9000-90-2/ 9000-85-5alpha-amylase;4-alpha-D-glucanglucanohydrolaseHighlypurified.FromBacilluslicheniformis.StABIlisedsolution.Forusein MegazymeTotalStarchandDietaryFiber methods,suitableforuseatpH6.5andabove.E-BLAAM-A-100mLspecificallytobeusedwithANKOMTDFDietaryFiberAnalyzer.Specificactivity:~55U/mg(40oC,pH6.5onCeralphareagent).Stability:>4yearsat4oC.DatabookletsforeachpacksizearelocatedintheDocumentationtab.ViewMegazyme’slatestGuideforDietaryFiberAnalysis.Newdevelopmentsinthemeasurementofα-amylase,endo-protease,β-glucanaseandβ-xylanase.McCleary,B.V.&Monaghan,D.(2000).“ProceedingsoftheSecondEuropeanSymposiumonEnzymesinGrainProcessing”,(M.Tenkanen,Ed.),VTTInformationService,pp.31-38.LinktoArticleReadAbstractOverthepast8years,wehavebeenactivelyinvolvedinthedevelopmentofsimpleandreliableassayprocedures,forthemeasurementofenzymesofinteresttothecerealsandrelatedindustries.Insomeinstances,differentprocedureshavebeendevelopedforthemeasurementofthesameenzymeactivity(e.g.α-amylase)inarangeofdifferentmaterials(e.g.malt,cerealgrainsandfungalpreparations).Thereasonsfordifferentproceduresmaydependonseveralfactors,suchastheneedforsensitivity,easeofuse,robustnessofthesubstratemixture,orthepossibilityforautomation.Inthispresentation,wewillpresentinformationonourmostup-to-dateproceduresforthemeasurementofα-amylase,endo-protease,β-glucanaseandβ-xylanase,withspecialreferencetotheuseofparticularassayformatsinparticularapplications.Measurementofcerealα-Amylase:Anewassayprocedure.McCleary,B.V.&Sheehan,H.(1987).JournalofCerealScience,6(3),237-251.LinktoArticleReadAbstractAnewprocedurefortheassayofcerealα-amylasehasbeendeveloped.Thesubstrateisadefinedmaltosaccharidewithanα-linkednitrophenylgroupatthereducingendofthechain,andachemicalblockinggroupatthenon-reducingend.Thesubstrateiscompletelyresistanttoattackbyβ-amylase,glucoamylaseandα-glucosidaseandthusformsthebasisofahighlyspecificassayforα-amylase.Thereactionmixtureiscomposedofthesubstrateplusexcessquantitiesofα-glucosidaseandglucoamylase.Nitrophenyl-maltosaccharidesreleasedonactionofα-amylaseareinstantaneouslycleavedtoglucoseplusfreep-nitrophenolbytheglucoamylaseandα-glucosidase,suchthattherateofreleaseofp-nitrophenoldirectlycorrelateswithα-amylaseactivity.TheassayprocedureshowsanexcellentcorrelationwiththeFarrand,theFallingNumberandthePhadebasα-amylaseassayprocedures.Anewprocedureforthemeasurementoffungalandbacterialα-amylase.Sheehan,H.&McCleary,B.V.(1988).BiotechnologyTechniques,2(4),289-292.LinktoArticleReadAbstractAprocedureforthemeasurementoffungalandbacterialα-amylaseincrudeculturefiltratesandcommercialenzymepreparationsisdescribed.Theprocedureemploysend-blocked(non-reducingend)p-nitrophenylmaltoheptaosideinthepresenceofamyloglucosidaseandα-glucosidase,andisabsolutelyspecificforα-amylase.Theassayprocedureissimple,reliableandaccurate.Animprovedenzymicmethodforthemeasurementofstarchdamageinwheatflour.Gibson,T.S.,AlQalla,H.&McCleary,B.V.(1992).JournalofCerealScience,15(1),15-27.LinktoArticleReadAbstractAnimprovedenzymicmethodforthedeterminationofstarchdamageinwheatflourhasbeendevelopedandcharacterized.Theproposedmethodissimpleandreliable,andenablesupto20samplestobemeasuredinduplicatein2h.Asingleassaytakesapproximately40min.Theassayprotocolisintwophases.Inthefirst,thefloursampleisincubatedwithpurifiedfungalalpha-amylasetoliberatedamagedstarchgranulesassolubleoligosaccharides.Aftercentrifugation,theoligosaccharidesinthesupernatantarehydrolysedbyamyloglucosidasetoglucoseinphase2.Theglucoseisthenquantifiedwithaglucoseoxidase/peroxidasereagent.Theproposedmethodthereforeavoidspotentialerrorsassociatedwithexistingstandardassays,whichemployunpurifiedamylasepreparationsandnon-specificreducinggroupmethodstoquantifythehydrolyticproducts.Despitetheuseofpurifiedassaycomponents,theproposedstarchdamagemethoddidnotexhibitanabsoluteend-pointtotheactionofalpha-amylaseinphase1.Thiswasduetoalowrateofhydrolysisofundamagedgranules,andisafeatureofenzymicmethodsforstarchdamagedetermination.Otheramylolyticenzymes,includingbeta-amylase,isoamylaseandpullulanase,andcombinationsoftheseenzymes,wereevaluatedasalternativestoalpha-amylaseintheproposedmethod.Theseenzymes,whenusedalone,gavenobenefitsovertheuseofalpha-amylase.Whenusedincombinationwithalpha-amylase,therewasasynergisticactiononundamagedgranules.Atestkitbasedontheassayformatdescribedinthispaperisthesubjectofaninternationalinterlaboratoryevaluation.Measurementofα-amylaseactivityinwhitewheatflour,milledmalt,andmicrobialenzymepreparations,usingtheceralphaassay:Collaborativestudy.McCleary,B.V.,McNally,M.,Monaghan,D.&Mugford,D.C.(2002).JournalofAOACInternational,85(5),1096-1102.LinktoArticleReadAbstractThisstudywasconductedtoevaluatethemethodperformanceofarapidprocedureforthemeasurementofα-amylaseactivityinfloursandmicrobialenzymepreparations.Samplesweremilled(ifnecessary)topassa0.5mmsieveandthenextractedwithabuffer/saltsolution,andtheextractswereclarifiedanddiluted.Aliquotsofdilutedextract(containingα-amylase)wereincubatedwithsubstratemixtureunderdefinedconditionsofpH,temperature,andtime.Thesubstrateusedwasnonreducingend-blockedp-nitrophenylmaltoheptaoside(BPNPG7)inthepresenceofexcessquantitiesofThermostableα-glucosidase.TheblockinggroupinBPNPG7preventshydrolysisofthissubstratebyexo-actingenzymessuchasamyloglucosidase,α-glucosidase,andβ-amylase.Whenthesubstrateiscleavedbyendo-actingα-amylase,thenitrophenyloligosaccharideisimmediatelyandcompletelyhydrolyzedtop-nitrophenolandfreeglucosebytheexcessquantitiesofα-glucosidasepresentinthesubstratemixture.Thereactionisterminated,andthephenolatecolordevelopedbytheadditionofanalkalinesolutionismeasuredat400nm.AmylaseactivityisexpressedintermsofCeralphaunits;1unitisdefinedastheamountofenzymerequiredtorelease1µmolp-nitrophenyl(inthepresenceofexcessquantitiesofα-glucosidase)in1minat40°C.Inthepresentstudy,15laboratoriesanalyzed16samplesasblindduplicates.Theanalyzedsampleswerewhitewheatflour,whitewheatflourtowhichfungalα-amylasehadbeenadded,milledmalt,andfungalandbacterialenzymepreparations.Repeatabilityrelativestandarddeviationsrangedfrom1.4to14.4%,andreproducibilityrelativestandarddeviationsrangedfrom5.0to16.7%.Thephysicochemicalpropertiesandinvitrodigestibilityofselectedcereals,tubersandlegumesgrowninChina.Liu,Q.,Donner,E.,Yin,Y.,Huang,R.L.&Fan,M.Z.(2006).FoodChemistry,99(3),470-477.LinktoArticleReadAbstractDigestibility,gelatinization,retrogradationandpastingpropertiesofstarchinvariouscereal,tuberandlegumefloursweredetermined.RapidlyandslowlydigestIBLestarchandresistantstarchwerepresentin11selectedflours.Ingeneral,cerealstarchesweremoredigestiblethanlegumestarchesandtuberstarchescontainedahighamountofresistantstarch.Thermalandrheologicalpropertiesoffloursweredifferentdependingonthecropsource.Determinationof“NetCarbohydrates”usinghigh-performanceanionexchangechromatography.Lilla,Z.,Sullivan,D.,Ellefson,W.,Welton,K.&Crowley,R.(2005).JournalofAOACInternational,88(3),714-719.LinktoArticleReadAbstractForlabelingpurposes,thecarbohydratecontentoffoodshastrADItionallybeendeterminedbydifference.Thisvalueincludessugars,starches,fiber,dextrins,sugaralcohols,polydextrose,andvariousotherorganiccompounds.Insomecases,thecurrentmethodmaylacksufficientspecificity,precision,andaccuracy.Thesearesubsequentlyquantitatedbyhighperformanceanionexchangechromatographywithpulsedamperometricdetectionandexpressedastotalnonfibersaccharidesorpercent“netcarbohydrates.”Inthisresearch,anewmethodwasdevelopedtoaddressthisneed.Themethodconsistsofenzymedigestionstoconvertstarches,dextrins,sugars,andpolysaccharidestotheirrespectivemonosaccharidecomponents.Thesearesubsequentlyquantifiedbyhigh-performanceanionexchangechromatographywithpulsedamperometricdetectorandexpressedastotalnonfibersaccharidesorpercent“netcarbohydrates.”Hydrolyzedendproductsofvariousnovelfibersandsimilarcarbohydrateshavebeenevaluatedtoensurethattheydonotregisterasfalsepositivesinthenewtestmethod.Thedatageneratedusingthe“netcarbohydrate”methodwere,inmanycases,significantlydifferentthanthevaluesproducedusingthetraditionalmethodology.Therecoveriesobtainedinafortifieddrinkmatrixrangedfrom94.9to105%.Thecoefficientofvariationwas3.3%.Physical,microscopicandchemicalcharacterisationofindustrialryeandwheatbransfromtheNordiccountries.Kamal-Eldin,A.,Lærke,H.N.,Knudsen,K.E.B.,Lampi,A.M.,Piironen,V.,Adlercreutz,H.,Katina,K.,Poutanen,K.&Ɨman,P.A.(2009).Food&nutritionresearch,53.LinktoArticleReadAbstractBackground:Epidemiologicalstudiesshowinverserelationshipbetweenintakeofwholegraincerealsandseveralchronicdiseases.Componentsandmechanismsbehindpossibleprotectiveeffectsofwholegraincerealsarepoorlyunderstood.Objective:Tocharacterisecommercialryebranpreparations,comparedtowheatbran,regardingstructureandcontentofnutrientsaswellasanumberofpresumablybioactivecompounds.Design:SixdifferentryebransfromSweden,DenmarkandFinlandwereanalysedandcomparedwithtwowheatbransregardingcolour,particlesizedistribution,microscopicstructuresandchemicalcompositionincludingproximalcomponents,vitamins,mineralsandbioactivecompounds.Results:Ryebransweregenerallygreenerincolourandsmallerinparticlesizethanwheatbrans.Theryebransvariedconsiderablyintheirstarchcontent(13.2–;28.3%),whichreflectedvariableinclusionofthestarchyendosperm.Althoughryeandwheatbranscontainedcomparablelevelsoftotaldietaryfibre,theydifferedintherelativeproportionsoffibrecomponents(i.e.arabinoxylan,β-glucan,cellulose,fructanandKlasonlignin).Generally,ryebranscontainedlesscelluloseandmoreβ-glucanandfructanthanwheatbrans.Withinsmallvariations,theryeandwheatbranswerecomparableregardingthecontentsoftocopherols/tocotrienols,totalfolate,sterols/stanols,phenolicacidsandlignans.Ryebranhadlessglycinebetaineandmorealkylresorcinolsthanwheatbrans.Conclusions:Theobservedvariationinthechemicalcompositionofindustriallyproducedryebranscallsfortheneedofstandardisationofthiscommodity,especiallywhenusedasafunctionalingredientinfoods.AsimplifiedmodificationoftheAOACofficialmethodfordeterminationoftotaldietaryfiberusingnewlydevelopedenzymes:preliminaryinterlaboratorystudy.Kanaya,K.,Tada,S.,Mori,B.,Takahashi,R.,Ikegami,S.,Kurasawa,S.,Okuzaki,M.,Mori,Y.,Innami,S.&Negishi,Y.(2007).JournalofAOACInternational,90(1),225-237.LinktoArticleReadAbstractApreliminaryinterlaboratorystudywasconductedtoevaluatethevalidityofthemodifiedAOACmethodfordeterminationoftotaldietaryfiberbyTadaandInnami,inwhichthe3-stepenzymaticdigestionprocessinAOACMethod991.43ismodifiedtoa2-stepprocesswithoutpHadjustment.Totaldietaryfibercontentsin8representativefoodstuffsweremeasuredusingboththeoriginalAOACMethod991.43andthemodifiedmethodin6researchfacilitiesinJapan.Repeatabilityrelativestandarddeviations,reproducibilityrelativestandarddeviations,andHorwitzratiovaluesfromthemodifiedmethodwereequivalenttothosefromAOACMethod991.43,exceptinthericesample.However,thisexceptionalcaseshowninthemodifiedmethodwasentirelydissolvedbytheadditionof-amylasestabilizingagents.Themodifiedmethod,whichshortenstheprocessofenzymaticdigestionfrom3to2stepsandinwhichonlyreactiontemperatureisadjustedunderthesamepH,wasfoundnotonlytogiveaccuratevaluescomparabletotheoriginalmethod,butalsotosubstantiallyreducethelaborrequiredbythelaboratorystaffintheprocessofroutineanalysis.Thisstudyrevealedthatthevalidityofthemodifiedmethodwasfurtherensuredbyadding-amylasestabilizingagentstothereactionsystem.TreatmentofcerealproductswithatailoredpreparationofTrichodermaenzymesincreasestheamountofsolubledietaryfiber.Napolitano,A.,Lanzuise,S.,Ruocco,M.,Arlotti,G.,Ranieri,R.,Knutsen,S.H.,Lorito,M.&Fogliano,V.(2006).JournalofAgriculturalandFoodChemistry,54(20),7863-7869.LinktoArticleReadAbstractNutritioNISTsrecommendincreasingtheintakeofsolubledietaryfiber(SDF),whichisverylowinmostcereal-basedproducts.ConversionofinsolubleDF(IDF)intoSDFcanbeachievedbychemicaltreatments,butthisaffectsthesensorialpropertiesoftheproducts.Inthisstudy,thepossibilityofgettingasubstantialincreaseofSDFfromcerealproductsusingatailoredpreparationofTrichodermaenzymesisreported.EnzymeswereproducedcultivatingTrichodermausingdurumwheatfiber(DWF)andbarleyspentgrain(BSG)asuniquecarbonsources.ManyTrichodermastrainswerescreened,andthehydrolysisconditionsabletoincreasebyenzymatictreatmenttheamountofSDFinDWFandBSGweredetermined.ResultsdemonstrateinbothproductsthatitispossibletotripletheamountofSDFwithoutamarkeddecreaseoftotalDF.Theenzymatictreatmentalsocausesthereleaseofhydroxycinnamicacids,mainlyferulicacid,thatarelinkedtothepolysaccharideschains.Thisincreasesthefreephenolicconcentration,thewater-solubleantioxidantactivity,and,inturn,thephenolcompoundsbioavailability.Methodforthedirectdeterminationofavailablecarbohydratesinlow-carbohydrateproductsusinghigh-performanceanionexchangechromatography.Ellingson,D.,Potts,B.,Anderson,P.,Burkhardt,G.,Ellefson,W.,Sullivan,D.,Jacobs,W.&Ragan,R.(2010).JournalofAOACInternational,93(6),1897-1904.LinktoArticleReadAbstractAnimprovedmethodfordirectdeterminationofavailablecarbohydratesinlow-levelproductshasbeendevelopedandvalidatedforalow-carbohydratesoyinfantformula.Themethodinvolvesmodificationofanexistingdirectdeterminationmethodtoimprovespecificity,accuracy,detectionlevels,andruntimesthroughamoreextensiveenzymaticdigestiontocaptureallavailable(orpotentiallyavailable)carbohydrates.Thedigestionhydrolyzesallcommonsugars,starch,andstarchderivativesdowntotheirmonosaccharidecomponents,glucose,fructose,andgalactose,whicharethenquantitatedbyhigh-performanceanion-exchangechromatographywithphotodiodearraydetection.Methodvalidationconsistedofspecificitytestingand10daysofanalyzingvariousspikelevelsofmixedsugars,maltodextrin,andcornstarch.TheoverallRSDwas4.0acrossallsampletypes,whichcontainedwithin-dayandday-to-daycomponentsof3.6and3.4,respectively.Overallaveragerecoverywas99.4(n=10).Averagerecoveryforindividualspikedsamplesrangedfrom94.1to106(n=10).Itisexpectedthatthemethodcouldbeappliedtoavarietyoflow-carbohydratefoodsandbeverages.Lowfolatecontentingluten-freecerealproductsandtheirmainingredients.Yazynina,E.,Johansson,M.,Jägerstad,M.&Jastrebova,J.(2008).FoodChemistry,111(1),236-242.LinktoArticleReadAbstractFolatecontentinsomegluten-freecerealproductsandtheirmainingredientswasdeterminedusingavalidatedmethodbasedonreversed-phasehighperformanceliquidchromatography(HPLC)withfluorescenceanddiodearraydetection.Themainfolateformsfoundingluten-freeproductswere5-methyl-tetrahydrofolateandtetrahydrofolate.Starchesandlowproteinflourscommonlyusedasmaincomponentsingluten-freeproductsappearedtobepoorfolatesourceswithfolatecontent≤6µg/100gfreshweight.Folatecontentingluten-freebreadswashigher(15.1–35.9µgfolate/100gfreshweight)duetouseofbakeryyeastwhichisarichfolatesource.Overall,folatecontentingluten-freeproductswaslowerthanintheirgluten-containingcounterparts.Therefore,fortificationofgluten-freeproductswithfolicacidorenrichmentoftheseproductswithnutrient-densefractionsofcerealsnaturallyfreefromgluten(suchasbuckwheat,quinoa,amaranthormillet)canbeofinterest.Starchtransformationinbran-enrichedextrudedwheatflour.Robin,F.,Théoduloz,C.,Gianfrancesco,A.,Pineau,N.,Schuchmann,H.P.&Palzer,S.(2011).CarbohydratePolymers,85(1),65-74.LinktoArticleReadAbstractWheatflourwasextrudedatdifferentconditionsofbarreltemperature(120°Cand180°C),watercontent(18%and22%)andscrewspeed(400rpmand800rpm)withanincreasingconcentrationofwheatbranfibers(2.8%,12.6%and24.4%).Inthetestedextrusionconditions,starchcrystalliteswerefullydissociated.Theestimatedstarchsolubilitywasinfluencedbytheprocessconditionsandrangedfrom24.1%to63.1%.Atsameprocessconditions,thestarchsolubilitywasincreasedonlyatthehighestbranlevel.Thebranconcentrationinfluencedtheglasstransitiontemperature,meltingtemperatureandsorptionisothermoftheunprocessedwheatflour.Attheextrusionconditions,itshowedthathigherbranlevelsledtoahigheramountoffreewaterandadecreaseinstarchglasstransitiontemperatureofupto13K.Thedifferencesinstarchtransformation,inducedbytheconcentrationofbran,mightcontributetothemodulationoftheexpansionpropertiesofbran-containingstarchyfoams.Potatogenotypedifferencesinnutritionallydistinctstarchfractionsaftercooking,andcookingplusstoringcool.Monro,J.,Mishra,S.,Blandford,E.,Anderson,J.&Genet,R.(2009).JournalofFoodCompositionandAnalysis,22(6),539-545.LinktoArticleReadAbstractRapidlydigestible(RDS),slowlydigestible(SDS)andresistantstarch(RS)weremeasuredin9NewZealandsupermarketpotatoesandin37linesfromapotatobreedingprogrambyinvitrodigestionimmediatelyaftercooking,andafterstoringat4°Cfor44hpost-cooking.TheaimwastomeasuretherangeinthetendencytoformSDSandRSinthepotatogenepoolinNewZealand.Immediatelyaftercooking,thepotatoescontained(meanandacross-cultivarrange,drymatterbasis)68%RDS(range62–73%),3%SDS(range0–8.5%),and3.9%RS(range3–6.4%).Coolstorageaftercookingalteredthedistributionandrangesto44%RDS(range33–53%),23%SDS(range15–34%)and7%RS(range4.7–15.8%).TherewasnosignificantrelationshipbetweenRSandSDSinthecooked-cooledpotatoes.Inthe37potatolines,SDSrangedfrom7to37%oftotalstarch,RSfrom12to27%oftotalstarchafterthepost-cookingcooltreatment.Theresultssuggestthattheglycaemicimpactofsomepotatoesmaybesubstantiallyreducedbycool-storingaftercooking,andthatthedifferencesbetweencultivarsinthetendencytoformcold-inducedSDSandRSaresufficientforthesetraitstobeusedinconventionalplantbreeding.Molecular,mesoscopicandmicroscopicstructureevolutionduringamylasedigestionofmaizestarchgranules.Shrestha,A.K.,Blazek,J.,Flanagan,B.M.,Dhital,S.,Larroque,O.,Morell,M.K.,Gilbert,E.P.&Gilbert,M.J.(2012).CarbohydratePolymers,90(1),23-33.LinktoArticleReadAbstractCerealstarchgranuleswithhigh(>50%)amylosecontentareapromisingsourceofnutritionallydesirableresistantstarch,i.e.starchthatescapesdigestioninthesmallintestine,butthestructuralfeaturesresponsiblearenotfullyunderstood.Wereporttheeffectsofpartialenzymedigestionofmaizestarchgranulesonamylopectinbranchlengthprofiles,doubleandsinglehelixcontents,gelatinisationproperties,crystallinityandlamellarperiodicity.Comparingresultsforthreemaizestarches(27,57,and84%amylose)thatdifferinbothstructuralfeaturesandamylase-sensitivityallowsconclusionstobedrawnconcerningtherate-determiningfeaturesoperatingunderthedigestionconditionsused.Allstarchesarefoundtobedigestedbyaside-by-sidemechanisminwhichthereisnomajorpreferenceduringenzymeattackforamylopectinbranchlengths,helixform,crystallinityorlamellarorganisation.Weconcludethatthemajorfactorcontrollingenzymesusceptibilityisgranulearchitecture,withshorterlengthscalesnotplayingamajorroleasinferredfromthelargelyinvariantnatureofnumerousstructuralmeasuresduringthedigestionprocess(XRD,NMR,SAXS,DSC,FACE).Resultsareconsistentwithdigestionratesbeingcontrolledbyrestricteddiffusionofenzymeswithindenselypackedgranularstructures,withaneffectivesurfaceareaforenzymeattackdeterminedbyexternaldimensions(57or84%amylose–relativelyslow)orinternalchannelsandpores(27%amylose–relativelyfast).Althoughtheprocessofgranuledigestionistoafirstapproximationnon-discriminatorywithrespecttostructureatmolecularandmesoscopiclengthscales,secondaryeffectsnotedinclude(i)partialcrystallisationofV-typehelicesduringdigestionof27%amylosestarch,(ii)preferentialhydrolysisoflongamylopectinbranchesduringtheearlystagehydrolysisof27%and57%butnot84%amylosestarches,linkedwithdisruptionoflamellarrepeatingstructureand(iii)partialB-typerecrystallisationafterprolongedenzymeincubationfor57%and84%amylosestarchesbutnot27%amylosestarch.DESCRIPTIONα-Amylase(Bacilluslicheniformis)EC3.2.1.1CAZyFamily:GH13CAS: 9000-90-2/ 9000-85-5Synonyms:alpha-amylase;4-alpha-D-glucanglucanohydrolaseForm:Stabilisedsolution.Stability: >4yearsat4oC.Specificactivity:~55U/mg(40oC,pH6.5onCeralphareagent).Unitdefinition:OneUnitofα-amylaseistheamountofenzymerequiredtoreleaseoneμmoleof p-nitrophenolfromblockedp-nitrophenyl-maltoheptaosideperminute(inthepresenceofexcessα-glucosidase)atpH6.0and40oC.Specificity:endo-hydrolysisofα-1,4-D-glucosidiclinkagesinstarch.Applications:ForuseinMegazymeTotalStarchandDietaryFibermethods.
Megazyme品牌产品简介

Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
Megazyme的主要产品线包括:

◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号 | 中文品名 | 用途 |
K-ACETAF | 乙酸[AF法]检测试剂盒 | 酶法定量分析乙酸最广泛使用的方法 |
K-ACHDF | 可吸收糖/膳食纤维检测试剂盒 | 酒精沉淀法测定膳食纤维 |
K-AMIAR | 氨快速检测试剂盒 | 用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。 |
K-AMYL | 直链淀粉/支链淀粉检测试剂盒 | 谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测 |
K-ARAB | 阿拉伯聚糖检测试剂盒 | 果汁浓缩液中阿拉伯聚糖的检测 |
K-ASNAM | L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒 | 用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析 |
K-ASPTM | 阿斯巴甜检测试剂盒 | 专业用于测定饮料和食品中阿斯巴甜含量,操作简单 |
K-BETA3 | β-淀粉酶检测试剂盒 | 适用于麦芽粉中β-淀粉酶的测定 |
K-BGLU | 混合键β-葡聚糖检测试剂盒 | 测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量 |
K-CERA | α-淀粉酶检测试剂盒 | 谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定 |
K-CITR | 柠檬酸检测试剂盒 | 快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量 |
K-DLATE | 乳酸快速检测试剂盒 | 快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量 |
K-EBHLG | 酵母β-葡聚糖酶检测试剂盒 | 用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖 |
K-ETSULPH | 总亚硫酸检测试剂盒 | 测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法 |
K-FRGLMQ | D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒 | 适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。 |
K-FRUC | 果聚糖检测试剂盒 | 含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。 |
K-FRUGL | D-果糖/D-葡萄糖检测试剂盒 | 对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。 |
K-GALM | 半乳甘露聚糖检测试剂盒 | 食品和植物产品中半乳甘露聚糖的含量检测 |
K-GLUC | D-葡萄糖[GOPOD]检测试剂盒 | 谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。 |
K-GLUHK | D-葡萄糖[HK]检测试剂盒 | 植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。 |
K-GLUM | 葡甘聚糖检测试剂盒 | 植物和食品中葡甘聚糖的含量测定。 |
K-INTDF | 总膳食纤维检测试剂盒 | 总膳食纤维特定检测和分析 |
K-LACGAR | 乳糖/D-半乳糖快速检测试剂盒 | 用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖 |
K-LACSU | 乳糖/蔗糖/D-葡萄糖检测试剂盒 | 混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定 |
K-LACTUL | 乳果糖检测试剂盒 | 特异性、快速和灵敏测量奶基样品中乳果糖含量 |
K-MANGL | D-甘露糖/D-果糖/D-葡萄糖检测试剂盒 | 适合测定植物产品和多糖酸性水解产物中D-甘露糖含量 |
K-MASUG | 麦芽糖/蔗糖/D-葡萄糖检测试剂盒 | 在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测 |
K-PECID | 胶质识别检测试剂盒 | 食品配料中果胶的鉴别 |
K-PHYT | 植酸(总磷)检测试剂盒 | 食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析 |
K-PYRUV | 丙酮酸检测试剂盒 | 在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析 |
K-RAFGA | 棉子糖/D-半乳糖检测试剂盒 | 快速测量植物材料和食品中棉子糖和半乳糖含量 |
K-RAFGL | 棉子糖/蔗糖/D-半乳糖检测试剂盒 | 分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定 |
K-SDAM | 淀粉损伤检测试剂盒 | 谷物面粉中淀粉损伤的检测和分析 |
K-SUCGL | 蔗糖/D-葡萄糖检测试剂盒 | 饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析 |
K-SUFRG | 蔗糖/D-果糖/D-葡萄糖检测试剂盒 | 适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定 |
K-TDFR | 总膳食纤维检测试剂盒 | 总膳食纤维检测 |
K-TREH | 海藻糖检测试剂盒 | 快速、可靠地检测食品、饮料和其它物料中海藻糖含量 |
K-URAMR | 尿素/氨快速检测试剂盒 | 适用于水、饮料、乳制品和食品中尿素和氨的快速测定 |
K-URONIC | D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒 | 简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸) |
K-XYLOSE | D-木糖检测试剂盒 | 简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量 |
K-YBGL | Beta葡聚糖[酵母和蘑菇]检测试剂盒 | 检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量 |
新品排行榜
1
Megazyme/Amyloglucosidase (Asper...
2
Megazyme/α-Amylase (Bacill...
3
Megazyme/Arabinoxylan (Wheat Flo...
4
Megazyme/D-Xylose Assay Kit/K-XY...
5
Megazyme/MegaQuant Colorimeter T...
6
Megazyme/Wheat Arabinoxylan (enz...
7
Megazyme/Cellazyme C Tablets/T-C...
8
Megazyme/Amyloglucosidase (Asper...
9
Megazyme/Amylazyme HY Tablets/T-...
10
Megazyme/CM-Pachyman/P-CMPAC/4 g...
文章排行榜
1
Megazyme/Total Starch Assay Kit (AA/AMG) /K-TSTA-100A/100 assays
2
膳食纤维总量检测试剂盒
3
K-TSTA,淀粉总量检测试剂盒,Total Starch (AA/AMG) Assay Kit
4
Megazyme/Phytic Acid (Total Phosphorus) Assay Kit/K-PHYT/50 assays per kit
5
Megazyme/Protease (Subtilisin A from Bacillus licheniformis)/E-BSPRT-10ML/0.5 grams - 10ML
6
Megazyme/AZCL-Pachyman/I-AZPAC/3 grams
7
Megazyme/AZCL-Curdlan (fine)/I-AZCURF/3 grams
8
Megazyme/Total Dietary Fiber Controls/K-TDFC/Sufficient for 6 Controls
9
Bit_试剂_Equl意果_易扩_AdvancedBioMatrix_DivBio_Drummond_Genie_Glascol_Megazyme_Phadebas_Worthington
10
Harlan Bioproducts_试剂_Equl意果_易扩_AdvancedBioMatrix_DivBio_Drummond_Genie_Glascol_Megazyme_Phadebas_Worthington