提醒:代购产品,无质量问题不接受退换货,下单前请仔细核对信息。下单后请及时联系客服 核对商品价格,订单生效后再付款。
Megazyme/Arabinoxylan (Wheat Flour; Insoluble)/P-WAXYI/5 grams
价格:

自营商城

解放采购

正品保障

及时交付

厂家直采

一站服务

货号:
品牌:
会员服务:
尊享会员价
贵宾专线
运费优惠
闪电退款
福利优惠
上门换新
友情提示
以上价格仅为参考,请联系客服询价。
免费咨询热线
4000-520-616
产品说明
HighpurityArABInoxylan(WheatFlour;Insoluble)foruseinresearch,biochemicalenzymeassaysandinvitrodiagnosticanalysis.Purity~80%.Carefullyextractedandpurifiedtomaintaintheferulicacidcrosslinksinthenativearabinoxylan.Treatedtoremovestarch,β-glucanandprotein.Ara:Xyl=36:51.Glucose6.5%,mannose4.4%andgalactose1.6%Novelsubstratesfortheautomatedandmanualassayofendo-1,4-β-xylanase.Mangan,D.,Cornaggia,C.,Liadova,A.,McCormack,N.,Ivory,R.,McKie,V.A.,Ormerod,A.&McCleary,D.V.(2017).CarbohydrateResearch,445,14-22.LinktoArticleReadAbstractendo-1,4-β-Xylanase(EC3.2.1.8)isemployedacrossabroadrangeofindustriesincludinganimalfeed,brewing,baking,biofuels,detergentsandpulp(paper).Despiteitsimportance,arapid,reliable,reproducIBLe,automatableassayforthisenzymethatisbasedontheuseofachemicallydefinedsubstratehasnotbeendescribedtodate.Reportedhereinisanewenzymecoupledassayprocedure,termedtheXylX6assay,thatemploysanovelsubstrate,namely4,6-O-(3-ketobutylidene)-4-nitrophenyl-β-45-O-glucosyl-xylopentaoside.ThedevelopmentofthesubstrateandassociatedassayisdiscussedhereandtherelationshipbetweentheactivityvaluesobtainedwiththeXylX6assayversustrADItionalreducingsugarassaysanditsspecificityandreproducibilitywerethoroughlyinvestigated.Hydrolysisofwheatflourarabinoxylan,acid-debranchedwheatflourarabinoxylanandarabino-xylo-oligosaccharidesbyβ-xylanase,α-L-arabinofuranosidaseandβ-xylosidase.McCleary,B.V.,McKie,V.A.,Draga,A.,Rooney,E.,Mangan,D.&Larkin,J.(2015).CarbohydrateResearch,407,79-96.LinktoArticleReadAbstractArangeofα-L-arabinofuranosyl-(1-4)-β-D-xylo-oligosaccharides(AXOS)wereproducedbyhydrolysisofwheatflourarabinoxylan(WAX)andaciddebranchedarabinoxylan(ADWAX),inthepresenceandabsenceofanAXH-d3α-L-arabinofuranosidase,byseveralGH10andGH11β-xylanases.ThestructuresoftheoligosaccharideswerecharacterisedbyGC-MSandNMRandbyhydrolysisbyarangeofα-L-arabinofuranosidasesandβ-xylosidase.TheAXOSwerepurifiedandusedtocharacterisetheactionpatternsofthespecificα-L-arabinofuranosidases.Theseenzymes,incombinationwitheitherCellvibriomixtusorNeocallimastixpatriciarumβ-xylanase,wereusedtoproduceelevatedlevelsofspecificAXOSonhydrolysisofWAX,suchas32-α-L-Araf-(1-4)-β-D-xylobiose(A3X),23-α-L-Araf-(1-4)-β-D-xylotriose(A2XX),33-α-L-Araf-(1-4)-β-D-xylotriose(A3XX),22-α-L-Araf-(1-4)-β-D-xylotriose(XA2X),32-α-L-Araf(1-4)-β-D-xylotriose(XA3X),23-α-L-Araf-(1-4)-β-D-xylotetraose(XA2XX),33-α-L-Araf-(1-4)-β-D-xylotetraose(XA3XX),23,33-di-α-L-Araf-(1-4)-β-D-xylotriose(A2+3XX),23,33-di-α-L-Araf-(1-4)-β-D-xylotetraose(XA2+3XX),24,34-di-α-L-Araf-(1-4)-β-D-xylopentaose(XA2+3XXX)and33,34-di-α-L-Araf-(1-4)-β-D-xylopentaose(XA3A3XX),manyofwhichhavenotpreviouslybeenproducedinsufficientquantitiestoallowtheiruseassubstratesinfurtherenzymicstudies.ForA2,3XX,yieldsofapproximately16%ofthestartingmaterial(wheatarabinoxylan)havebeenachieved.Mixturesoftheα-L-arabinofuranosidases,withspecificactiononAXOS,havebeencombinedwithβ-xylosidaseandβ-xylanasetoobtainanoptimalmixtureforhydrolysisofarabinoxylantoL-arabinoseandD-xylose.Generationoftransgenicwheat(TriticumaestivumL.)accumulatingheterologousendo‐xylanaseorferulicacidesteraseintheendosperm.Harholt,J.,Bach,I.C.,Lind‐Bouquin,S.,Nunan,K.J.,Madrid,S.M.,Brinch‐Pedersen,H.,Holm,P.B.&Scheller,H.V.(2010).PlantBiotechnologyJournal,8(3),351-362.LinktoArticleReadAbstractEndo-xylanase(fromBacillussubtilis)orferulicacidesterase(fromAspergillusniger)wereexpressedinwheatunderthecontroloftheendosperm-specific1DX5gluteninpromoter.Constructsbothwithandwithouttheendoplasmicreticulumretentionsignal(Lys-Asp-Glu-Leu)KDELwereused.TransgenicplantswererecoveredinallfourcasesbutnoqualitativedifferencescouldbeobservedwhetherKDELwasaddedornot.Endo-xylanaseactivityintransgenicgrainswasincreasedbetweentwoandthreefoldrelativetowildtype.Thegrainswereshrivelledandhada25%–33%decreaseinmass.Extensiveanalysisofthecellwallsshoweda10%–15%increaseinarabinosetoxyloseratio,a50%increaseintheproportionofwater-extractablearabinoxylan,andashiftintheMWofthewater-extractablearabinoxylanfrombeingmainlylargerthan85kDtobeingbetween2and85kD.Ferulicacidesterase-expressinggrainswerealsoshrivelled,andtheseedweightwasdecreasedby20%–50%.Noferulicacidesteraseactivitycouldbedetectedinwild-typegrainswhereasferulicacidesteraseactivitywasdetectedintransgeniclines.Thegraincellwallshad15%–40%increaseinwater-unextractablearabinoxylanandadecreaseinmonomericferulicacidbetween13%and34%.Inalltheplants,theobservedchangesareconsistentwithaplantresponsethatservestominimizetheeffectoftheheterologouslyexpressedenzymesbyincreasingarabinoxylanbiosynthesisandcross-linking.Arsenalofplantcellwalldegradingenzymesreflectshostpreferenceamongplantpathogenicfungi.King,B.C.,Waxman,K.D.,Nenni,N.V.,Walker,L.P.,Bergstrom,G.C.&Gibson,D.M.(2011).BiotechnolBiofuels,4(4).LinktoArticleReadAbstractBackground:Thediscoveryanddevelopmentofnovelplantcellwalldegradingenzymesisakeysteptowardsmoreefficientdepolymerizationofpolysaccharidestofermentablesugarsfortheproductionofliquidtransportationbiofuelsandotherbioproducts.TheindustrialfungusTrichodermareeseiisknowntobehighlycellulolyticandisamajorindustrialmicrobialsourceforcommercialcellulases,xylanasesandothercellwalldegradingenzymes.However,enzyme-ProspectingresearchcontinuestoidentifyopportunitiestoenhancetheactivityofT.reeseienzymepreparationsbysupplementingwithenzymaticdiversityfromothermicrobes.Thegoalofthisstudywastoevaluatetheenzymaticpotentialofabroadrangeofplantpathogenicandnon-pathogenicfungifortheirabilitytodegradeplantbiomassandisolatedpolysaccharides.Results:Large-scalescreeningidentifiedarangeofhydrolyticactivitiesamong348uniqueisolatesrepresenting156speciesofplantpathogenicandnon-pathogenicfungi.Hierarchicalclusteringwasusedtoidentifygroupsofspecieswithsimilarhydrolyticprofiles.Amongmoderatelyandhighlyactivespecies,plantpathogenicspecieswerefoundtobemoreactivethannon-pathogensonsixofeightsubstratestested,withnosignificantdifferenceseenontheothertwosubstrates.Amongthepathogenicfungi,greaterhydrolysiswasseenwhentheyweretestedonbiomassandhemicellulosederivedfromtheirhostplants(commelinoidmonocotordicot).AlthoughT.reeseihasahydrolyticprofilethatishighlyactiveoncelluloseandpretreatedbiomass,itwaslessactivethansomenaturalisolatesoffungiwhentestedonxylansanduntreatedbiomass.Conclusions:Severalhighlyactiveisolatesofplantpathogenicfungiwereidentified,particularlywhentestedonxylansanduntreatedbiomass.Therewerestatisticallysignificantpreferencesforbiomasstypereflectingthemonocotordicothostpreferenceofthepathogentested.Thesehighlyactivefungiarepromisingtargetsforidentificationandcharacterizationofnovelcellwalldegradingenzymesforindustrialapplications.AnovelThermophilicxylanasefromAchaetomiumsp.Xz-8withhighcatalyticefficiencyandapplicationpotentialsinthebrewingandotherindustries.Zhao,L.,Meng,K.,Shi,P.,Bai,Y.,Luo,H.,Huang,H.,Wang,Y.,Yang,P.&Yao,B.(2013).ProcessBiochemistry,48(12),1879-1885.LinktoArticleReadAbstractThermophilicxylanasesareofgreatinterestfortheirwideindustrialapplicationprospects.Hereweidentifiedathermophilicxylanase(XynC01)ofglycosidehydrolase(GH)family10inathermophilicfungalstrainAchaetomiumsp.Xz-8.ThededucedaminoacidsofXynC01showedthehighestidentityof≤52%toexperimentallyverifiedxylanases.XynC01wasfunctionallyexpressedinPichiapastoris,showedoptimalactivityatpH5.5and75°CwithstabilityoverabroadpHrange(pH4.0–10.0)andattemperaturesof55°Candbelow.XynC01hadthehighestcatalyticefficiency(kcat/Km,3710mL/s/mg)everreportedforallGH10xylanases,andwasresistanttoalltestedmetalionsandchemicalreagents.Itshydrolysisproductsofvariousxylansweresimple,mainlyconsistingofxylobioseandxylose.Undersimulatedmashingconditions,XynC01alonehadacomparableeffectonfiltrationimprovementwithUltraflofromNovozymes(20.24%vs.20.71%),andshowedbetterperformancewhencombinedwithacommercialβ-glucanase(38.50%).Combiningallexcellentpropertiesdescribedabove,XynC01mayfinddiverseapplicationsinindustrialfields,especiallyinthebrewingindustry.Plantpathogensasasourceofdiverseenzymesforlignocellulosedigestion.Gibson,D.M.,King,B.C.,Hayes,M.L.&Bergstrom,G.C.(2011).CurrentOpinioninMicroBIOLOGy,14(3),264-270.LinktoArticleReadAbstractTheplantcellwallisamajorbarrierthatmanyplantpathogensmustsurmountforsuccessfulinvasionoftheirplanthosts.Fullgenomesequencingofanumberofplantpathogenshasrevealedoftenlarge,complex,andredundantenzymesystemsfordegradationofplantcellwalls.Recentsurveyshavenotedthatplantpathogenicfungiarehighlycompetentproducersoflignocellulolyticenzymes,andtheirenzymeactivitypatternsreflecthostspecificity.Weproposethatplantpathogensmaycontributetobiofuelproductionasdiversesourcesofaccessoryenzymesformoreefficientconversionoflignocelluloseintofermentablesugars.Roleof(1,3)(1,4)β-glucanincellwalls:Interactionwithcellulose.Kiemle,S.N.,Zhang,X.,Esker,A.R.,Toriz,G.,Gatenholm,P.&Cosgrove,D.J.(2014).Biomacromolecules,15(5),1727-1736.LinktoArticleReadAbstract(1,3)(1,4)-β-D-Glucan(mixed-linkageglucanorMLG),acharacteristichemicelluloseinprimarycellwallsofgrasses,wasinvestigatedtodeterminebothitsroleincellwallsanditsinteractionwithcelluloseandothercellwallpolysaccharidesinvitro.BindingisothermsshowedthatMLGadsorptionontomicrocrystallinecelluloseisslow,irreversible,andtemperature-dependent.MeasurementsusingquartzcrystalmicrobalancewithdissipationmonitoringshowedthatMLGadsorbedirreversiblyontoamorphousregeneratedcellulose,formingathickhydrogel.Oligosaccharideprofilingusingendo-(1,3)(1,4)-β-glucanaseindicatedthattherewasnodifferenceinthefrequencyanddistributionof(1,3)and(1,4)linksinboundandunboundMLG.ThebindingofMLGtocellulosewasreducedifthecellulosesampleswerefirsttreatedwithcertaincellwallpolysaccharides,suchasxyloglucanandglucuronoarabinoxylan.ThetetheringfunctionofMLGincellwallswastestedbyapplyingendo-(1,3)(1,4)-β-glucanasetowallsamplesinaconstantforceextensometer.Cellwallextensionwasnotinduced,whichindicatesthatenzyme-accessibleMLGdoesnottethercellulosefibrilsintoaload-bearingnetwork.Adsorptionofβ-glucosidasesintwocommercialpreparationsontopretreatedbiomassandlignin.Haven,M.Ø.&Jørgensen,H.(2013).BiotechnologyforBiofuels,6(1),165.LinktoArticleReadAbstractBackground:Enzymerecyclingisamethodtoreducetheproductioncostsforadvancedbioethanolbyloweringtheoveralluseofenzymes.Commercialcellulasepreparationsconsistofmanydifferentenzymesthatareimportantforefficientandcompletecellulose(andhemicellulose)hydrolysis.Thisabundanceofdifferentactivitiescomplicatesenzymerecyclingsincetheindividualenzymesbehavedifferentlyintheprocess.Previously,thegeneralperceptionwasthatβ-glucosidasescouldeasilyberecycledviatheliquidphase,astheyhavemostlybeenobservednottoadsorbtopretreatedbiomassoronlyadsorbtoaminorextent.Results:TheresultsfromthisstudywithCellic®CTec2revealedthatthevastmajorityoftheβ-glucosidaseactivitywaslostfromtheliquidphaseandwasadsorbedtotheresidualbiomassduringhydrolysisandfermentation.Adsorptionstudieswithβ-glucosidasesintwocommercialpreparations(Novozym188andCellic®CTec2)tosubstratesmimickingthecomponentsinpretreatedwheatstrawrevealedthattheAspergillusnigerβ-glucosidaseinNovozym188didnotadsorbsignificantlytoanyofthecomponentsinpretreatedwheatstraw,whereastheβ-glucosidaseinCellic®CTec2adsorbedstronglytolignin.Theextentofadsorptionofβ-glucosidasefromCellic®CTec2wasaffectedbybothtypeofbiomassandpretreatmentmethod.Withapproximately65%oftheβ-glucosidasesfromCellic®CTec2adsorbedontoligninfrompretreatedwheatstraw,theactivityoftheβ-glucosidasesintheslurrydecreasedbyonly15%.Thisdemonstratedthatsomeenzymeremainedactivedespitebeingbound.ItwaspossibletoreducetheadsorptionofCellic®CTec2β-glucosidasetoligninfrompretreatedwheatstrawbyadditionofbovineserumalbuminorpoly(ethyleneglycol).Conclusions:Contrarytotheβ-glucosidasesinNovozym188,theβ-glucosidasesinCellic®CTec2adsorbsignificantlytolignin.TheligninadsorptionobservedforCellic®CTec2isusuallynotaproblemduringhydrolysisandfermentationsincemostofthecatalyticactivityisretained.However,adsorptionofβ-glucosidasestoligninmayprovetobeaproblemwhentryingtorecycleenzymesintheproductionofadvancedbioethanol.

Megazyme品牌产品简介

来源:作者:人气:2149发表时间:2016-05-19 10:59:00【  
Megazyme检测试剂盒 - 用于食品、饲料、乳制品、葡萄酒分析
Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
Megazyme检测试剂盒产品◆ 检测试剂盒
◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号 中文品名 用途
K-ACETAF 乙酸[AF法]检测试剂盒 酶法定量分析乙酸最广泛使用的方法
K-ACHDF 可吸收糖/膳食纤维检测试剂盒 酒精沉淀法测定膳食纤维
K-AMIAR 氨快速检测试剂盒 用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。
K-AMYL 直链淀粉/支链淀粉检测试剂盒 谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测
K-ARAB 阿拉伯聚糖检测试剂盒 果汁浓缩液中阿拉伯聚糖的检测
K-ASNAM L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒 用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析
K-ASPTM 阿斯巴甜检测试剂盒 专业用于测定饮料和食品中阿斯巴甜含量,操作简单
K-BETA3 β-淀粉酶检测试剂盒 适用于麦芽粉中β-淀粉酶的测定
K-BGLU 混合键β-葡聚糖检测试剂盒 测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量
K-CERA α-淀粉酶检测试剂盒 谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定
K-CITR 柠檬酸检测试剂盒 快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量
K-DLATE 乳酸快速检测试剂盒 快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量
K-EBHLG 酵母β-葡聚糖酶检测试剂盒 用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖
K-ETSULPH 总亚硫酸检测试剂盒 测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法
K-FRGLMQ D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒 适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。
K-FRUC 果聚糖检测试剂盒 含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。
K-FRUGL D-果糖/D-葡萄糖检测试剂盒 对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。
K-GALM 半乳甘露聚糖检测试剂盒 食品和植物产品中半乳甘露聚糖的含量检测
K-GLUC D-葡萄糖[GOPOD]检测试剂盒 谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUHK D-葡萄糖[HK]检测试剂盒 植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUM 葡甘聚糖检测试剂盒 植物和食品中葡甘聚糖的含量测定。
K-INTDF 总膳食纤维检测试剂盒 总膳食纤维特定检测和分析
K-LACGAR 乳糖/D-半乳糖快速检测试剂盒 用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖
K-LACSU 乳糖/蔗糖/D-葡萄糖检测试剂盒 混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定
K-LACTUL 乳果糖检测试剂盒 特异性、快速和灵敏测量奶基样品中乳果糖含量
K-MANGL D-甘露糖/D-果糖/D-葡萄糖检测试剂盒 适合测定植物产品和多糖酸性水解产物中D-甘露糖含量
K-MASUG 麦芽糖/蔗糖/D-葡萄糖检测试剂盒 在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测
K-PECID 胶质识别检测试剂盒 食品配料中果胶的鉴别
K-PHYT 植酸(总磷)检测试剂盒 食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析
K-PYRUV 丙酮酸检测试剂盒 在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析
K-RAFGA 棉子糖/D-半乳糖检测试剂盒 快速测量植物材料和食品中棉子糖和半乳糖含量
K-RAFGL 棉子糖/蔗糖/D-半乳糖检测试剂盒 分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定
K-SDAM 淀粉损伤检测试剂盒 谷物面粉中淀粉损伤的检测和分析
K-SUCGL 蔗糖/D-葡萄糖检测试剂盒 饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析
K-SUFRG 蔗糖/D-果糖/D-葡萄糖检测试剂盒 适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定
K-TDFR 总膳食纤维检测试剂盒 总膳食纤维检测
K-TREH 海藻糖检测试剂盒 快速、可靠地检测食品、饮料和其它物料中海藻糖含量
K-URAMR 尿素/氨快速检测试剂盒 适用于水、饮料、乳制品和食品中尿素和氨的快速测定
K-URONIC D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒 简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸)
K-XYLOSE D-木糖检测试剂盒 简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量
K-YBGL Beta葡聚糖[酵母和蘑菇]检测试剂盒 检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量
客服在线
service-logo
已有 人查看该问题
tel
全国免费服务热线
4000-520-616
微信公众号
关注我们
手机扫码,关注动态