产品说明
TheStarchDamagetestkitissuitableforthemeasurementandanalysisofstarchdamageincerealflours.Animprovedenzymicmethodforthemeasurementofstarchdamageinwheatflour.Gibson,T.S.,AlQalla,H.&McCleary,B.V.(1992).JournalofCerealScience,15(1),15-27.LinktoArticleReadAbstractAnimprovedenzymicmethodforthedeterminationofstarchdamageinwheatflourhasbeendevelopedandcharacterized.Theproposedmethodissimpleandreliable,andenablesupto20samplestobemeasuredinduplicatein2h.Asingleassaytakesapproximately40min.Theassayprotocolisintwophases.Inthefirst,thefloursampleisincubatedwithpurifiedfungalalpha-amylasetoliberatedamagedstarchgranulesassolubleoligosaccharides.Aftercentrifugation,theoligosaccharidesinthesupernatantarehydrolysedbyamyloglucosidasetoglucoseinphase2.Theglucoseisthenquantifiedwithaglucoseoxidase/peroxidasereagent.Theproposedmethodthereforeavoidspotentialerrorsassociatedwithexistingstandardassays,whichemployunpurifiedamylasepreparationsandnon-specificreducinggroupmethodstoquantifythehydrolyticproducts.Despitetheuseofpurifiedassaycomponents,theproposedstarchdamagemethoddidnotexhibitanabsoluteend-pointtotheactionofalpha-amylaseinphase1.Thiswasduetoalowrateofhydrolysisofundamagedgranules,andisafeatureofenzymicmethodsforstarchdamagedetermination.Otheramylolyticenzymes,includingbeta-amylase,isoamylaseandpullulanase,andcombinationsoftheseenzymes,wereevaluatedasalternativestoalpha-amylaseintheproposedmethod.Theseenzymes,whenusedalone,gavenobenefitsovertheuseofalpha-amylase.Whenusedincombinationwithalpha-amylase,therewasasynergisticactiononundamagedgranules.Atestkitbasedontheassayformatdescribedinthispaperisthesubjectofaninternationalinterlaboratoryevaluation.Collaborativeevaluationofanenzymaticstarchdamageassaykitandcomparisonwithothermethods.Gibson,T.S.,Kaldor,C.J.&McCleary,B.V.(1993).CerealChem.,70(1),47-51.LinktoArticleReadAbstractAcommerciallyavailableenzymaticassaykitforthemeasurementofstarchdamageinwheatflourwascomparedwithcurrentstandardmethods,andthekit"sprecisionandrepeatABIlityweredeterminedinacollaborativestudy.Starchdamagevaluesdeterminedonarangeofflourswiththeassaykitcorrelatedwell(r>0.96)withthosedeterminedbyexistingstandardenzymaticmethods.Theprecisionofthekitwasevaluatedinacomprehensiveinterlaboratorystudy.Thekitprocedurewasfoundtobehighlyrepeatable(relativestandarddeviation,2.94-6.80%)andreproducIBLe(relativestandarddeviation,5.00-10.30%).Measurementoftotalstarchincerealproductsbyamyloglucosidase-alpha-amylasemethod:collaborativestudy.McCleary,B.V.,Gibson,T.S.&Mugford,D.C.(1997).JournalofAOACInternational,80,571-579.LinktoArticleReadAbstractAnAmericanAssociationofCerealChemists/AOACcollaborativestudywasconductedtoevaluatetheaccuracyandreliabilityofanenzymeassaykitprocedureformeasurementoftotalstarchinarangeofcerealgrainsandproducts.Thefloursampleisincubatedat95degreesCwithThermostablealpha-amylasetocatalyzethehydrolysisofstarchtomaltodextrins,thepHoftheslurryisadjusted,andtheslurryistreatedwithahighlypurifiedamyloglucosidasetoquantitativelyhydrolyzethedextrinstoglucose.Glucoseismeasuredwithglucoseoxidase-peroxidasereagent.Thirty-twocollaboratorsweresent16homogeneoustestsamplesas8blindduplicates.Thesesamplesincludedchickenfeedpellets,whitebread,greenpeas,high-amylosemaizestarch,whitewheatflour,wheatstarch,oatbran,andspaghetti.Allsampleswereanalyzedbythestandardprocedureasdetailedabove;4samples(high-amylosemaizestarchandwheatstarch)werealsoanalyzedbyamethodthatrequiresthesamplestobecookedfirstindimethylsulfoxide(DMSO).Relativestandarddeviationsforrepeatability(RSD(r))rangedfrom2.1to3.9%,andrelativestandarddeviationsforreproducibility(RSD(R))rangedfrom2.9to5.7%.TheRSD(R)valueforhighamylosemaizestarchanalyzedbythestandard(non-DMSO)procedurewas5.7%;thevaluewasreducedto2.9%whentheDMSOprocedurewasused,andthedeterminedstarchvaluesincreasedfrom86.9to97.2%.Measurementofcarbohydratesingrain,feedandfood.McCleary,B.V.,Charnock,S.J.,Rossiter,P.C.,O’Shea,M.F.,Power,A.M.&Lloyd,R.M.(2006).JournaloftheScienceofFoodandAgriculture,86(11),1648-1661.LinktoArticleReadAbstractProceduresforthemeasurementofstarch,starchdamage(gelatinisedstarch),resistantstarchandtheamylose/amylopectincontentofstarch,β-glucan,fructan,glucomannanandgalactosyl-sucroseoligosaccharides(raffinose,stachyoseandverbascose)inplantmaterial,animalfeedsandfoodsaredescribed.Mostofthesemethodshavebeensuccessfullysubjectedtointerlaboratoryevaluation.AllmethodsarebasedontheuseofenzymeseitherpurifiedbyconventionalchromatographyorproducedusingmolecularBIOLOGytechniques.Suchmethodsallowspecific,accurateandreliablequantificationofaparticularcomponent.Problemsincalculatingtheactualweightofgalactosyl-sucroseoligosaccharidesintestsamplesarediscussedindetail.Starchproperties,invitrodigestibilityandsensoryevaluationoffresheggpastaproducedfromoat,teffandwheatflour.Hager,A.S.,Czerny,M.,Bez,J.,Zannini,E.&Arendt,E.K.(2013).JournalofCerealScience,58(1),156-163.LinktoArticleReadAbstractSpecificdietaryrequirements,e.g.ceoliacdisease,aswellasincreasedconsumerdemandforproductsofhighnutritionalvalue,makestheproductionofpastafromalternativecerealsinteresting.Rawmaterialcharacterisationshowedthattheutilisationofoatandteffflourisbeneficialastheseingredientscontainhigherlevelsoffibreandmineralcompositionissuperiortothatofwheat.Starchpropertiessignificantlyinfluencepastaqualityandthereforedamagedstarchlevels,amylaseactivity,pastingpropertiesandgelatinisationtemperaturesoftheflourswereinvestigated.Fresheggpastabasedonwheat,oatandteffflourwasproduced.Sensorypropertiesofoatspaghettiwerefoundtobeveryclosetothatofwheatpastabutimprovementofsmoothnessandaromaisnecessary,whileteffspaghettishowedreducedsensoryquality.Aninvitroenzymaticdigestionwasperformedusingadialysissystemtomimicthebehaviourofpastaaseatenandmakepredictionsontheglycemicindex(GI).ThepredictedGIwashighestforwheatpasta,followedbyteffandoat.Ultrastructurewasstudiedusingconfocallaserscanningmicroscopy,allowingthevisualisationofdifferencesinstarchgranulesizeandshapeaswellasgelatinisationoccurringduringthecookingprocess.Effectofsorghumflourcompositionandparticlesizeonqualitypropertiesofgluten-freebread.Trappey,E.F.,Khouryieh,H.,Aramouni,F.&Herald,T.(2014).FoodScienceandTechnologyInternational,1082013214523632.LinktoArticleReadAbstractWhite,food-gradesorghumwasmilledtoflourofvaryingextractionrates(60%,80%,and100%)andpin-milledatdifferentspeeds(nopin-milling,low-speed,andhigh-speed)tocreatefloursofbothvariablecompositionandparticlesize.Flourswerecharacterizedforflourcomposition,totalstarchcontent,particlesizedistribution,color,damagedstarch,andwaterabsorption.Breadwascharacterizedforspecificvolume,crumbstructureproperties,andcrumbfirmness.Significantdifferenceswerefound(PP Nutritionalpropertiesandultra-structureofcommercialglutenfreefloursfromdifferentbotanicalsourcescomparedtowheatflours.Hager,A.S.,Wolter,A.,Jacob,F.,Zannini,E.&Arendt,E.K.(2012).JournalofCerealScience,56(2),239-247.LinktoArticleReadAbstractCoeliacpatientssufferfromanimmunemediateddisease,triggeredbytheingestionofaproteincomposite(gluten)foundinwheat,ryeandbarley.Consequently,thereisaneedforproductssuchasbreadorpasta,madefromalternativecerealgrainsorpseudocereals.Afairproportionoftheglutenfreeproductscurrentlyonthemarketarenutritionallyinadequate.Hence,itwastheaimofthisstudytoinvestigatethenutrientcompositionofsevencommonlyusedcommercialglutenfreeflours(oat,rice,sorghum,maize,teff,buckwheatandquinoa)andcomparethemtowheatandwholemealwheatflour.Inadditiontothelevelsofallmajorcompounds,alsomineralcomposition,fattyacidprofile,phytate,polyphenolsandfolatecontentweredetermined.Furthermore,propertiesofcarbohydrateswerestudiedingreaterdetail,lookingattotalanddamagedstarchlevels;total,solubleandinsolubledietaryfibrecontentaswellasamylose/amylopectinratio.Proteinswerefurtherinvestigatedbymeansofcapillaryelectrophoreses.Additionally,theultra-structureofthesematerialswasexploredusingscanningelectronmicroscopy.Theresultsshowthatmaizeandriceflourarepoorregardingtheirnutritionalvalue(lowprotein,fibre,folatecontents).Incontrast,teffaswellasthepseudocerealsquinoaandbuckwheatshowafavourablefattyacidcompositionandarehighinproteinandfolate.Inparticular,quinoaandteffarecharacterisedbyhighfibrecontentandarehighincalcium,magnesiumandiron.Thereforethesefloursrepresentnutrientdenserawmaterialsfortheproductionofglutenfreefoods.Qualityvariationsinfloursusedforpretzelmanufacturing.Yao,N.&Seetharaman,K.(2010).InternationalJournalofFoodScience&Technology,45(10),2052-2061.LinktoArticleReadAbstractResearchontheflourpropertiesandtheirinfluenceonpretzelcharacteristicsisscarce.Inthefirstpartofthestudy,flourproteinquantityandquality,flourpastingpropertiesandsolventretentionpropertiesof108floursampleswereinvestigatedtohelpprofiletheflourpropertiesusedbythepretzelindustry.Fourdifferentflourswithawiderproteinrangethanwhatwasrevealedintheflourevaluationwereselectedtoproducepretzelsandtodeterminetherelationshipbetweenflourpropertiesandthefinalproductquality.Pretzelhardness,colourandpastingpropertieswereusedasameasureofpretzelquality.Resultsindicatedthathardwheatflourwouldproduceaharderpretzelbutwouldnotaffectthesurfacecolouroffinalproduct.However,softwheatflourwithalowerdamagedstarch,lowwaterabsorptionlevelsandlowerwaterbindingpowersduringoperationsisdesiredformakinghardpretzel.Effectofcornpreparationmethodsondry-grindethanolproductionbygranularstarchhydrolysisandpartitioningofspentbeersolids.Lamsal,B.P.,Wang,H.&Johnson,L.A.(2011).BioresourceTechnology,102(12),6680-6686.LinktoArticleReadAbstractTwocornpreparationmethods,rollermillflakingandhammermillgrinding,werecomparedforefficientprocessingofcornintoethanolbygranularstarchhydrolysisandsimultaneousfermentationbyyeastSaccharomycescerevisiae.Cornwaseithergroundinahammermillwithdifferentsizescreensorcrushedinasmooth-surfacedrollermillatdifferentrollergapsettings.Thepartitioningofbeersolidsandsizedistributionofsolidsinthethinstillagewerecompared.Themeanparticlediameterd50forpreparationsvariedwithset-upsandrangedbetween210and340µmforgroundcorn,and1180–1267µmforflakedcorn.Theethanolconcentrationsinbeerweresimilar(18–19%v/v)forgroundandflakedpreparations,however,ethanolproductivityincreasedwithreducedparticlesize.Rollerversushammermillingofcornreducedsolidsinthinstillageby28%,anddoubledthevolumepercentoffines(d507µm)inthinstillageanddecreasedcoarse(d50122µm)byhalfcomparedtohammermilling.Flakingasacornpreparationtechniquefordry-grindethanolproductionusingrawstarchhydrolysis.Lamsal,B.P.&Johnson,L.A.(2012).JournalofCerealScience,56(2),253-259.LinktoArticleReadAbstractA23full-factorialstudywasdesignedtostudytheeffectofcornpreparationmethods(flakingandgrinding)ondry-grindethanolperformanceusingrawstarchhydrolysis(RSH)process.Moisturecontent(15,22%),flakerrollergapsetting(0.508mm,1.016mm),andgrindingwerestudied.Fifteenhundredgofcornsampleswerecracked,rollerpressed,andwereeithergroundfurtherorretained,alongwithcontrolgroundcorn.Abimodalsizedistributionwasobservedforgroundcorn,regardlessofflaking.Moistureat22%resultedinbigger-sizedflakeswithd50between~1.3and1.8mm,comparedto~138–169µmforgroundcorn.Notallgroundcornresultedinhigherethanolconcentrationinfermentationbeer;theethanollevelsinbeerdidnotreflectthestarchhydrolysistrendthatfavoredgroundcorn.Inarelatedstudy,thebeerethanolconcentrationdidnotshowacleartrendwithrollermillgapsettingwhilefermentingtheflakesproducedat0.203,0.305,0.406,and0.508mmgapsettings.Generally,flakesfromcornat22%moistureresultedinhigherethanolcontentinbeer.Rollermillflakingwasfoundcomparabletohammermillgrindingfordry-grindcornethanolviarawstarchhydrolysisandyeastfermentation.Chemicalcompositionandfunctionalpropertiesofnativechestnutstarch(CastaneasativaMill).Cruz,B.R.,Abraão,A.S.,Lemos,A.M.&Nunes,F.M.(2013).CarbohydratePolymers,94(1),594-602.LinktoArticleReadAbstractStarchisolationmethodscanchangetheirphysico-chemicalandfunctionalcharacteristicshinderingtheestablishmentofastarch-foodfunctionalityrelation.Asimplehighyieldandsoftisolationmethodwasappliedforchestnut(CastaneasativaMill)starchconsistinginsteepingandfruitdisintegrationina25mMsodiumbisulfitesolutionandpurificationbysedimentation.Starchintegrity,physico-chemicalcomposition,morphologyandfunctionalpropertiesweredetermined,beingobservedsignificantdifferencesfrompreviousdescribedmethodsforchestnutstarchisolation.TheX-raypatternwasofB-type,withadegreeofcrystallinityrangingfrom51%to9%,dependentonthestarchmoisturecontent.Theonset,peak,andconclusiongelatinizationtemperatureswere57.1°C,61.9°Cand67.9°C,respectively.Totalamylosecontentwas26.6%,andtherewasnotfoundanyevidenceforlipidcomplexedamylose.Swellingpowerat90°Cwas19g/gstarch,andtheamountofleachedamylosewas78%ofthetotalamylosecontent.NativechestnutstarchpresentsatypeBpastingprofilesimilartocornstarchbutwithalowergelatinization(56.1°C)andpeakviscosity(79.5°C)temperatures,makingnativechestnutstarchapotentialtechnologicalalternativetocornstarch,especiallyinapplicationwherelowerprocessingtemperaturesareneeded.Changesinricewithvariabletemperatureparboiling:thermalandspectroscopicassessment.Himmelsbach,D.S.,Manful,J.T.&Coker,R.D.(2008).Cerealchemistry,85(3),384-390.LinktoArticleReadAbstractRapidviscoanalysis(RVA)anddifferentialscannningcalorimetry(DSC)providedoverallassessmentsoftheeffectsofvariabletemperaturesoakingat30,50,70,and90°Candsteamingat4,8,and12min.Calculationoftherelativeparboilingindex(RPI)andpercentgelatinizationprovidedgoodmetricsfordeterminingtheoveralleffectsofpartialparboiling.FT-Ramanandsolid-state13CCP-MASNMRspectroscopiesprovidedinsighttoconformationalchangesinproteinandstarchofpaddyriceundervariousparboilingconditions.RVAshowedlowerpastingcurvesandDSCshowedlowerΔHwithincreasedtemperatureandsteamingtimes.Alargedecreaseinviscosityoccurredwithonlythe30-4treatmentasopposedtorawrice.ThisobservationwasconsistentwithFT-Ramanresultsthatindicatedsubstantialconversionoftheproteinfromα-helixtootherconformations.DSCindicatedincompletegelatinizationofstarch,evenwith90°Csoakingand12minofsteaming.Solid-state13CCP-MASNMRspectroscopyconfirmedthisresult.However,itindicatedthepercentofVh/amorphousplustheremainingcrystallinestarchinthe90-12treatmentwasequaltotheamorphousandpartially-orderedstarchincommerciallyparboiledrice.Theseresultssuggestthatpartialparboiling,90°Csoaking,andmorethan8minofsteaming(ideally≈12min)ofpaddyriceissufficienttoinducechangesthatinactivateenzymesandprovideenoughstarchgelatinizationtopreventkernelbreakage.Determinationofformulationandprocessingfactorsaffectingslowlydigestiblestarch,proteindigestibilityandantioxidantcapacityofextrudedsorghum–maizecompositeflour.Licata,R.,Chu,J.,Wang,S.,Coorey,R.,James,A.,Zhao,Y.&Johnson,S.(2014).InternationalJournalofFoodScience&Technology,49(5),1408-1419.LinktoArticleReadAbstractHigh-temperaturehigh-pressureextrusionofsorghum–maizecompositeflour,ofpotentialforhealthyfoodmanufacture,wasinvestigatedbyfactorialexperimentaldesigntodeterminetheeffectoflevelofsorghumindrymix(15–60%);finalbarrelzonetemperature(120–150°C);totalmoistureinbarrel(21.4–25.8%);totalinputrate(2.3–6.8kgh-1);andscrewspeed(250–450rpm)onextrudateslowlydigestiblestarch(SDS),phenoliccontent,antioxidantcapacity,proteindigestibility,densityandexpansionratio.ExtrudateSDSincreasedwithincreasingsorghumlevelanddecreasedasthebarreltemperatureincreased.Totalphenoliccontentandantioxidantcapacitywerepositivelyassociatedwithsorghumlevel.Proteindigestibilitywasassociatednegativelywithsorghumlevelandpositivelywithbarreltemperature.Extrudatedensitywasassociatedpositivelywithtotalmoistureandnegativelywithbarreltemperatureandinputrate.Sorghumindrymix,finalbarrelzonetemperatureandtotalmoistureinbarrelwerethethreemostsignificantindependentvariablesinfluencingextrudatedependantvariables.Analysisofstarchamylolysisusingplotsforfirst-orderkinetics.Butterworth,P.J.,Warren,F.J.,Grassby,T.,Patel,H.&Ellis,P.R.(2012).CarbohydratePolymers,87(3),2189-2197.LinktoArticleReadAbstractInvestigatorsoftenstudyproductreleasefromstarchesduringprolongedincubationswithα-amylaseinvitro.Thereactiontimecoursesusuallyfittoalinearformofafirstorderrateequation,i.e.,ln[(C∞−Ct)/C∞]=−kt.ThisequationcallsforanaccurateestimateofC∞,i.e.,theconcentrationofproductattheendofthereaction.EstimatesofC∞fromdigestibilitycurvescanbeunreliable.TheGuggenheimmethoddoesnotrequirepriorknowledgeofC∞butseemsnottohavebeenappliedtostarchhydrolysisdata.Analternativemethodisalsoavailableinwhichthelogarithmoftheslope(LOS)ofadigestibilitycurveatvarioustimepointsisplottedagainsttime.ThisallowsestimationsofbothkandC∞andcanalsorevealwhetherchangesoccurindigestionratefromrapidtoslowasdigestionproceeds.WedescribetheGuggenheimandLOSmethodsandprovideexamplesoftheirapplicationtostarchdigestibilitydata.ValidationofMethodsAACCMethod76-31.01ICCStandardNo.164RACIStandardMethodColourimetricmethodforthedeterminationofStarchDamageincerealfloursPrinciple: (fungalα-amylase)(1)Damaged(orgelatinised)starch+H2O→maltodextrins (amyloglucosidase)(2)Maltodextrins+H2O→D-glucose (glucoseoxidase)(3)D-Glucose+H2O+O2→D-gluconate+H2O2 (peroxidase)(4)2H2O2+p-hydroxybenzoicacid+4-aminoantipyrine→ quinoneimine+4H2OKitsize: 200assaysMethod: Spectrophotometricat510nmTotalassaytime: ~40minDetectionlimit: 0.5-100%ofsampleweightApplicationexamples:CerealfloursandothermaterialsMethodrecognition: AACC(Method76-31.01),ICC(StandardNo.164)andRACI(StandardMethod)AdvantagesVerycosteffective Allreagentsstablefor>2yearsafterpreparation Onlyenzymatickitavailable Veryspecific Simpleformat Mega-Calc™softwaretoolisavailablefromourwebsiteforhassle-freerawdataprocessing Standardincluded
Megazyme品牌产品简介

Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
Megazyme的主要产品线包括:

◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号 | 中文品名 | 用途 |
K-ACETAF | 乙酸[AF法]检测试剂盒 | 酶法定量分析乙酸最广泛使用的方法 |
K-ACHDF | 可吸收糖/膳食纤维检测试剂盒 | 酒精沉淀法测定膳食纤维 |
K-AMIAR | 氨快速检测试剂盒 | 用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。 |
K-AMYL | 直链淀粉/支链淀粉检测试剂盒 | 谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测 |
K-ARAB | 阿拉伯聚糖检测试剂盒 | 果汁浓缩液中阿拉伯聚糖的检测 |
K-ASNAM | L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒 | 用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析 |
K-ASPTM | 阿斯巴甜检测试剂盒 | 专业用于测定饮料和食品中阿斯巴甜含量,操作简单 |
K-BETA3 | β-淀粉酶检测试剂盒 | 适用于麦芽粉中β-淀粉酶的测定 |
K-BGLU | 混合键β-葡聚糖检测试剂盒 | 测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量 |
K-CERA | α-淀粉酶检测试剂盒 | 谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定 |
K-CITR | 柠檬酸检测试剂盒 | 快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量 |
K-DLATE | 乳酸快速检测试剂盒 | 快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量 |
K-EBHLG | 酵母β-葡聚糖酶检测试剂盒 | 用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖 |
K-ETSULPH | 总亚硫酸检测试剂盒 | 测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法 |
K-FRGLMQ | D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒 | 适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。 |
K-FRUC | 果聚糖检测试剂盒 | 含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。 |
K-FRUGL | D-果糖/D-葡萄糖检测试剂盒 | 对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。 |
K-GALM | 半乳甘露聚糖检测试剂盒 | 食品和植物产品中半乳甘露聚糖的含量检测 |
K-GLUC | D-葡萄糖[GOPOD]检测试剂盒 | 谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。 |
K-GLUHK | D-葡萄糖[HK]检测试剂盒 | 植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。 |
K-GLUM | 葡甘聚糖检测试剂盒 | 植物和食品中葡甘聚糖的含量测定。 |
K-INTDF | 总膳食纤维检测试剂盒 | 总膳食纤维特定检测和分析 |
K-LACGAR | 乳糖/D-半乳糖快速检测试剂盒 | 用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖 |
K-LACSU | 乳糖/蔗糖/D-葡萄糖检测试剂盒 | 混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定 |
K-LACTUL | 乳果糖检测试剂盒 | 特异性、快速和灵敏测量奶基样品中乳果糖含量 |
K-MANGL | D-甘露糖/D-果糖/D-葡萄糖检测试剂盒 | 适合测定植物产品和多糖酸性水解产物中D-甘露糖含量 |
K-MASUG | 麦芽糖/蔗糖/D-葡萄糖检测试剂盒 | 在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测 |
K-PECID | 胶质识别检测试剂盒 | 食品配料中果胶的鉴别 |
K-PHYT | 植酸(总磷)检测试剂盒 | 食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析 |
K-PYRUV | 丙酮酸检测试剂盒 | 在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析 |
K-RAFGA | 棉子糖/D-半乳糖检测试剂盒 | 快速测量植物材料和食品中棉子糖和半乳糖含量 |
K-RAFGL | 棉子糖/蔗糖/D-半乳糖检测试剂盒 | 分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定 |
K-SDAM | 淀粉损伤检测试剂盒 | 谷物面粉中淀粉损伤的检测和分析 |
K-SUCGL | 蔗糖/D-葡萄糖检测试剂盒 | 饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析 |
K-SUFRG | 蔗糖/D-果糖/D-葡萄糖检测试剂盒 | 适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定 |
K-TDFR | 总膳食纤维检测试剂盒 | 总膳食纤维检测 |
K-TREH | 海藻糖检测试剂盒 | 快速、可靠地检测食品、饮料和其它物料中海藻糖含量 |
K-URAMR | 尿素/氨快速检测试剂盒 | 适用于水、饮料、乳制品和食品中尿素和氨的快速测定 |
K-URONIC | D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒 | 简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸) |
K-XYLOSE | D-木糖检测试剂盒 | 简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量 |
K-YBGL | Beta葡聚糖[酵母和蘑菇]检测试剂盒 | 检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量 |
新品排行榜
1
Megazyme/Amyloglucosidase (Asper...
2
Megazyme/α-Amylase (Bacill...
3
Megazyme/Arabinoxylan (Wheat Flo...
4
Megazyme/D-Xylose Assay Kit/K-XY...
5
Megazyme/MegaQuant Colorimeter T...
6
Megazyme/Wheat Arabinoxylan (enz...
7
Megazyme/Cellazyme C Tablets/T-C...
8
Megazyme/Amyloglucosidase (Asper...
9
Megazyme/Amylazyme HY Tablets/T-...
10
Megazyme/CM-Pachyman/P-CMPAC/4 g...
文章排行榜
1
Megazyme/Total Starch Assay Kit (AA/AMG) /K-TSTA-100A/100 assays
2
膳食纤维总量检测试剂盒
3
K-TSTA,淀粉总量检测试剂盒,Total Starch (AA/AMG) Assay Kit
4
Megazyme/Phytic Acid (Total Phosphorus) Assay Kit/K-PHYT/50 assays per kit
5
Megazyme/Protease (Subtilisin A from Bacillus licheniformis)/E-BSPRT-10ML/0.5 grams - 10ML
6
Megazyme/AZCL-Pachyman/I-AZPAC/3 grams
7
Megazyme/AZCL-Curdlan (fine)/I-AZCURF/3 grams
8
Megazyme/Total Dietary Fiber Controls/K-TDFC/Sufficient for 6 Controls
9
Bit_试剂_Equl意果_易扩_AdvancedBioMatrix_DivBio_Drummond_Genie_Glascol_Megazyme_Phadebas_Worthington
10
Harlan Bioproducts_试剂_Equl意果_易扩_AdvancedBioMatrix_DivBio_Drummond_Genie_Glascol_Megazyme_Phadebas_Worthington