提醒:代购产品,无质量问题不接受退换货,下单前请仔细核对信息。下单后请及时联系客服 核对商品价格,订单生效后再付款。
Megazyme/Resistant Starch Assay Kit/K-RSTAR/100 assays per kit
价格:

自营商城

解放采购

正品保障

及时交付

厂家直采

一站服务

货号:
品牌:
会员服务:
尊享会员价
贵宾专线
运费优惠
闪电退款
福利优惠
上门换新
友情提示
以上价格仅为参考,请联系客服询价。
免费咨询热线
4000-520-616
产品说明
TheResistantStarchTestkitfor themeasurementandanalysisofresistantstarchinplantmaterialsandstarchsamples.Measurementoftotalstarchincerealproductsbyamyloglucosidase-alpha-amylasemethod:collaborativestudy.McCleary,B.V.,Gibson,T.S.&Mugford,D.C.(1997).JournalofAOACInternational,80,571-579.LinktoArticleReadAbstractAnAmericanAssociationofCerealChemists/AOACcollaborativestudywasconductedtoevaluatetheaccuracyandreliABIlityofanenzymeassaykitprocedureformeasurementoftotalstarchinarangeofcerealgrainsandproducts.Thefloursampleisincubatedat95degreesCwithThermostablealpha-amylasetocatalyzethehydrolysisofstarchtomaltodextrins,thepHoftheslurryisadjusted,andtheslurryistreatedwithahighlypurifiedamyloglucosidasetoquantitativelyhydrolyzethedextrinstoglucose.Glucoseismeasuredwithglucoseoxidase-peroxidasereagent.Thirty-twocollaboratorsweresent16homogeneoustestsamplesas8blindduplicates.Thesesamplesincludedchickenfeedpellets,whitebread,greenpeas,high-amylosemaizestarch,whitewheatflour,wheatstarch,oatbran,andspaghetti.Allsampleswereanalyzedbythestandardprocedureasdetailedabove;4samples(high-amylosemaizestarchandwheatstarch)werealsoanalyzedbyamethodthatrequiresthesamplestobecookedfirstindimethylsulfoxide(DMSO).Relativestandarddeviationsforrepeatability(RSD(r))rangedfrom2.1to3.9%,andrelativestandarddeviationsforreproducibility(RSD(R))rangedfrom2.9to5.7%.TheRSD(R)valueforhighamylosemaizestarchanalyzedbythestandard(non-DMSO)procedurewas5.7%;thevaluewasreducedto2.9%whentheDMSOprocedurewasused,andthedeterminedstarchvaluesincreasedfrom86.9to97.2%.Twoissuesindietaryfibermeasurement.McCleary,B.V.(2001).CerealFoodsWorld,46(4),164-165.LinktoArticleReadAbstractEnzymeactivityandpurityofthesetopics,theeasiesttodealwithistheimportanceofenzymepurityandactivity.Asascientistactivelyinvolvedinpolysaccharideresearchoverthepast25years,Ihavecometoappreciatetheimportanceofenzymepurityandspecificityinpolysaccharidemodificationandmeasurement(7).Thesefactorstranslatedirectlytodietaryfiber(DF)methodology,becausethemajorcomponentsofDFarecarbohydratepolymersandoligomers.ThecommitteereportpublishedintheMarchissueofCerealFOODSWORLDrefersonlytothemethodologyformeasuringenzymepurityandactivity(8)thatleduptheAOACmethod985.29(2).Inthisworkenzymepuritywasgaugedbythelackofhydrolysis(i.e.,completerecovery)ofaparticularDFcomponent(e.g.β-glucan,larchgalactanorcitruspectin).Enzymeactivitywasmeasuredbytheabilitytocompletelyhydrolyzerepresentativestarchandprotein(namelywheatstarchandcasein).Theserequirementsandrestrictionsonenzymepurityandactivitywereadequateatthetimethemethodwasinitiallydevelopedandservedasausefulworkingguide.However,itwasrecognizedthattherewasaneedformorestringentqualitydefinitionsandassayproceduresforenzymesusedinDFmeasurements.Measurementofresistantstarch.McCleary,B.V.&Monaghan,D.A.(2002).JournalofAOACInternational,85(3),665-675.LinktoArticleReadAbstractArobustandreliablemethodwasdevelopedtomeasureresistantstarch(RS),i.e.,starchthatentersthelargeintestine.InvivoconditionswerereflectedasmuchaspossIBLewhileauser-friendlyformatwasmaintained.Parametersinvestigatedincludedα-amylaseconcentration,pHofincubation,maltoseinhibitionofα-amylase,theneedforamyloglucosidaseinclusion,theeffectofshakingandstirringondeterminedvalues,andproblemsinrecoveringandanalyzingtheRS-containingpellet.TheRSvaluesobtainedwereingoodagreementwithpublishedinvivodata.Aninterlaboratoryevaluationofthemethodhasbeencompleted(FirstActionMethod2002.02).Measurementofresistantstarchbyenzymaticdigestioninstarchandselectedplantmaterials:Collaborativestudy.McCleary,B.V.,McNally,M.&Rossiter,P.(2002).JournalofAOACInternational,85(5),1103-1111.LinktoArticleReadAbstractInterlaboratoryperformancestatisticswasdeterminedforamethoddevelopedtomeasuretheresistantstarch(RS)contentofselectedplantfoodproductsandarangeofcommercialstarchsamples.FoodmaterialsexaminedcontainedRS(cookedkidneybeans,greenbanana,andcornflakes)andcommercialstarches,mostofwhichnaturallycontain,orwereprocessedtoyield,elevatedRSlevels.ThemethodevaluatedwasoptimizedtoyieldRSvaluesinagreementwiththosereportedforinvivostudies.Thirty-sevenlaboratoriestested8pairsofblindduplicatestarchorplantmaterialsampleswithRSvaluesbetween0.6(regularmaizestarch)and64%(freshweightbasis).Formatrixesexcludingregularmaizestarch,repeatabilityrelativestandarddeviation(RSDr)valuesrangedfrom1.97to4.2%,andreproducibilityrelativestandarddeviation(RSDR)valuesrangedfrom4.58to10.9%.Therangeofapplicabilityofthetestis2-64%RS.ThemethodisnotsuitableforproductswithrandRSDRvaluesareunacceptablyhigh.Measurementofcarbohydratesingrain,feedandfood.McCleary,B.V.,Charnock,S.J.,Rossiter,P.C.,O’Shea,M.F.,Power,A.M.&Lloyd,R.M.(2006).JournaloftheScienceofFoodandAgriculture,86(11),1648-1661.LinktoArticleReadAbstractProceduresforthemeasurementofstarch,starchdamage(gelatinisedstarch),resistantstarchandtheamylose/amylopectincontentofstarch,β-glucan,fructan,glucomannanandgalactosyl-sucroseoligosaccharides(raffinose,stachyoseandverbascose)inplantmaterial,animalfeedsandfoodsaredescribed.Mostofthesemethodshavebeensuccessfullysubjectedtointerlaboratoryevaluation.AllmethodsarebasedontheuseofenzymeseitherpurifiedbyconventionalchromatographyorproducedusingmolecularBIOLOGytechniques.Suchmethodsallowspecific,accurateandreliablequantificationofaparticularcomponent.Problemsincalculatingtheactualweightofgalactosyl-sucroseoligosaccharidesintestsamplesarediscussedindetail.Anintegratedprocedureforthemeasurementoftotaldietaryfibre(includingresistantstarch),non-digestibleoligosaccharidesandavailablecarbohydrates.McCleary,B.V.(2007).AnalyticalandBioanalyticalChemistry,389(1),291-308.LinktoArticleReadAbstractAmethodisdescribedforthemeasurementofdietaryfibre,includingresistantstarch(RS),non-digestibleoligosaccharides(NDO)andavailablecarbohydrates.Basically,thesampleisincubatedwithpancreaticα-amylaseandamyloglucosidaseunderconditionsverysimilartothosedescribedinAOACOfficialMethod2002.02(RS).Reactionisterminatedandhighmolecularweightresistantpolysaccharidesareprecipitatedfromsolutionwithalcoholandrecoveredbyfiltration.RecoveryofRS(formostRSsources)isinlinewithpublisheddatafromileostomystudies.Theaqueousethanolextractisconcentrated,desaltedandanalysedforNDObyhigh-performanceliquidchromatographybyamethodsimilartothatdescribedbyOkuma(AOACMethod2001.03),exceptthatforlogisticalreasons,D-sorbitolisusedastheinternalstandardinplaceofglycerol.Availablecarbohydrates,definedasD-glucose,D-fructose,sucrose,theD-glucosecomponentoflactose,maltodextrinsandnon-resistantstarch,aremeasuredasD-glucoseplusD-fructoseinthesampleafterhydrolysisofoligosaccharideswithamixtureofsucrase/maltaseplusβ-galactosidase.Deficiencyofmaizestarch-branchingenzymeiresultsinalteredstarchfinestructure,decreaseddigestibilityandreducedcoleoptilegrowthduringgermination.Xia,H.,Yandeau-Nelson,M.,Thompson,D.B.&Guiltinan,M.J.(2011).BMCPlantBiology,11(1),95-107.LinktoArticleReadAbstractBackground:Twodistinctstarchbranchingenzyme(SBE)isoformspredatethedivergenceofmonocotsanddicotsandhavebeenconservedinplantssincethen.ThisstronglysuggeststhatbothSBEIandSBEIIprovideuniqueselectiveadvantagestoplants.However,nophenotypefortheSBEImutation,sbe1a,hadbeenpreviouslyobserved.Toexplorethisincongruitytheobjectiveofthepresentworkwastocharacterizefunctionalandmolecularphenotypesofbothsbe1aandwild-type(Wt)intheW64Amaizeinbredline.Results:Endospermstarchgranulesfromthesbe1amutantweremoreresistanttodigestionbypancreaticα-amylase,andthesbe1amutantstarchhadanalteredbranchingpatternforamylopectinandamylose.Whenkernelsweregerminated,thesbe1amutantwasassociatedwithshortercoleoptilelengthandhigherresidualstarchcontent,suggestingthatlessefficientstarchutilizationmayhaveimpairedgrowthduringgermination.Conclusions:ThepresentreportdocumentsforthefirsttimeamolecularphenotypeduetotheabsenceofSBEI,andsuggestsstronglythatitisassociatedwithalteredphysiologicalfunctionofthestarchinvivo.WebelievethattheseresultsprovideaplausiblerationalefortheconservationofSBEIinplantsinbothmonocotsanddicots,asgreaterseedlingvigorwouldprovideanimportantsurvivaladvantagewhenresourcesarelimited.ImprovementoftheAOAC2009.01totaldietaryfibremethodforbreadandotherhighstarchcontainingmatrices.Brunt,K.&Sanders,P.(2013).FoodChemistry,140(3),574-580.LinktoArticleReadAbstractThedietaryfibre(DF)contentinwheatgrainbasedfoodproductshavebeenestablishedwithboththeclassicalAOAC985.29dietaryfibreandthenewAOAC2009.01totaldietaryfibreprotocol.Thereisagoodagreementbetweenthehighmolecularweightdietaryfibre(HMWDF)contentsmeasuredwiththeAOAC2009.01methodand(DF)contentmeasuredwiththeclassicalAOAC985.29methodinwheatgrainbasedfoodproducts.WiththeAOAC2009.01methodalsoasignificantamountoflowmolarweightdietaryfibre(LMWDF),rangingfrom1%to3%w/w,wasmeasuredwhichisnotquantifiedwiththeAOAC985.29method.Withsemi-preparativeGPCtheLMWDF(DP≥3)fractionsinthewheatgrainbasedfoodproductswereisolated.ThemonosaccharidecompositionofthedissolvedLMWDFconstituentswasdetermined.Glucosewasbyfarthemostabundantmonosaccharidepresentwitharabinose,galactose,xyloseandmannoseasminorconstituents.ItappearedthattheLMWDFcontainsstillnotfullyconverteddigestiblestarch/malto-oligosaccharidefragmentswithDP≥3,whichareerroneouslyquantifiedasLMWDF.ByintroducinganextraAMGhydrolysisstepintheAOAC2009.01protocolafterevaporationoftheethanolanddissolvingtheresidueindeionisedwater,thesemalto-oligosaccharidesarefullyhydrolysedresultinginthatwayinacorrectandlowerLMWDFcontent.Sterilizationinaliquidofaspecificstarchmakesitslowlydigestibleinvitroandlowglycemicinrats.Severijnen,C.,Abrahamse,E.,VanderBeek,E.M.,Buco,A.,vandeHeijning,B.J.M.,vanLaere,K.&Bouritius,H.(2007).TheJournalofNutrition,137(10),2202-2207.LinktoArticleReadAbstractDiabeticsarerecommendedtoeatabalanceddietcontainingnormalamountsofcarbohydrates,preferablythosewithalowglycemicindex.Forsolidfoods,thiscanbeachievedbychoosingwhole-grain,fiber-richproducts.For(sterilized)liquidproducts,suchasmealreplacers,thechoicesforcarbohydratesourcesarerestrictedduetotechnologicallimitations.Starchesusuallyhaveahighglycemicindexaftersterilizationinliquids,whereaslowglycemicsugarsandsugarreplacerscanonlybeusedinlimitedamounts.Usinganinvitrodigestionassay,weidentifiedaresistantstarch(RS)source[modifiedhighamylosestarch(mHAS)]thatmightenabletheproductionofasterilizedliquidproductwithalowglycemicindex.HeatingmHASfor4–5mininliquidincreasedtheslowlydigestiblestarch(SDS)fractionattheexpenseoftheRSportion.Theeffectwastemperaturedependentandreacheditsmaximumabove120°C.Heatingat130°CsignificantlyreducedtheRSfractionfrom49to22%.Theproductremainedstableforatleastseveralmonthswhenstoredat4°C.ToinvestigatewhetherahigherSDSfractionwouldresultinalowerpostprandialglycemicresponse,thesterilizedmHASsolutionwascomparedwithrapidlydigestiblemaltodextrin.MaleWistarratsreceivedani.g.bolusof2.0gavailablecarbohydrate/kgbodyweight.Ingestionofheat-treatedmHASresultedinasignificantattenuationofthepostprandialplasmaglucoseandinsulinresponsescomparedwithmaltodextrin.mHASappearstobeastarchsourcewhich,aftersterilizationinaliquidproduct,acquiresslow-releaseproperties.Thelong-termstabilityofmHASsolutionsindicatesthatthismayprovideasuitablecarbohydratesourceforlowglycemicindexliquidproductsforinclusioninadiabetes-specificdiet.Effectsofwheatinclusionandxylanasesupplementationofthedietonproductiveperformance,nutrientretention,andendogenousintestinalenzymeactivityoflayinghens.Mirzaie,S.,Zaghari,M.,Aminzadeh,S.,Shivazad,M.&Mateos,G.G.(2012).PoultryScience,91(2),413-425.LinktoArticleReadAbstractAnexperimentwasconductedtostudytheeffectsofinclusionofawheatcultivar(highinnonstarchpolysaccharides)andxylanasesupplementationofthedietonproductiveperformance,pHofthegastrointestinaltract,nutrientretention,andintestinalenzymeactivityofHy-LineW-36layinghensfrom25to47wkofage.Theexperimentwascompletelyrandomizedwith8treatmentsarrangedfactoriallywith4levelsofwheat(0,23,46,and69%)thatcorrespondedtoadietaryarabinoxylancontentof3.0,3.3,3.6,and3.9%,withorwithoutxylanasesupplementation.Eachtreatmentwasreplicated5times.Fortheentireexperimentalperiod,eggweight(PPPPPPPPPPncontentofthediets(PPExoticcornlineswithincreasedresistantstarchandimpactonstarchthermalcharacteristics.Rohlfing,K.A.,Pollak,L.M.&White,P.J.(2010).CerealChemistry,87(3),190-193.LinktoArticleReadAbstractTenparentcornlines,includingfourmutants(dullsugary2,amylose-extendersugary2,amylose-extenderdull,andanamylose-extenderwithintrogressedGuatemalengermplasm[GUATae])andsixlineswithintrogressedexoticgermplasmbackgrounds,werecrossedwitheachothertocreate20Progenycrossestoincreaseresistantstarch(RS)asadietaryfiberincornstarchandtoprovidematerialsforthermalevaluation.Theresistantstarch2(RS2)valuesfromthe10parentlineswere18.3–52.2%andthevaluesfromthe20progenycrosseswere16.6–34.0%.The%RS2ofparentswasnotadditiveintheoffspringbutgreaterRS2inparentswascorrelatedtogreaterRS2intheprogenycrosses(r=0.63).Differentialscanningcalorimetry(DSC)measuredstarchthermalcharacteristics,revealingpositivecorrelationsofpeakgelatinizationtemperatureandchangeinenthalpywith%RS2(r=0.65andr=0.67,P≤0.05);however,%retrogradation(ameasureofRS3)andretrogradationparametersdidnotcorrelatewith%RS2.The%RS2andonsettemperatureincreasedwiththeadditionoftheaegene,likelybecauseRSdelaysgelatinization.Effectofextrusionconditionsonresistantstarchformationfrompastrywheatflour.Kim,J.H.,Tanhehco,E.J.&Ng,P.K.W.(2006).FoodChemistry,99(4),718-723.LinktoArticleReadAbstractPastrywheatflourwasextrudedundervariousconditionsoffeedmoisture(20%,40%,and60%)andscrewspeed(150,200,and250rpm),atconstantbarreltemperatureprofile(40,60,80,100,and120°C,feedporttoexitdie).Theextrudedsampleswerestoredat4°Cfor0,7,or14days,atwhichtimesresistantstarch(RS)formationwasanalyzed.Thermalandpastingpropertiesofextrudedsamplesstoredfor14dayswereanalyzedusingadifferentialscanningcalorimeterandrapidviscoanalyzer(RVA),respectively.TheRScontentincreasedafterextrusioncomparedtonon-extrudedpastrywheatflour.Highsignificantpositivecorrelationsoffeedmoisture(PPResistantstarchandstarchpastingpropertiesofastarchsynthaseIIa-deficientwheatwithapparenthighamylose.Yamamori,M.,Kato,M.,Yui,M.&Kawasaki,M.(2006).AustralianJournalofAgriculturalResearch,57(5),531-535.LinktoArticleReadAbstractThebreadwheat(TriticumaestivumL.)analysedinthisstudyhasbeenproducedbygeneticallyeliminatingthestarchsynthaseIIaandshowsapparenthighamylose(HA)intheflourstarch.SomestarchpropertiesoftheHAwheatwereanalysed.TheHAwheatcontained2.8–3.6%resistantstarch(RS),muchmorethanthenormal(control)wheat,whichcontainedalmostnoRS.AutoclavingtheHAandnormalwheatstarchesincreasedRS.Theformercontained10.5%RSandthelatter5.9or6.8%RS.SwellingoftheHAwheatstarchanditspastingpropertiesusingRapidViscoAnalyzer(RVA)wereinvestigated.Swellingpower(g/g)oftheHAwheatin0.1%AgNO3andswellingvolume(mL/g)inureasolutionweresignificantlylessthanthoseofthenormalwheat.TheRVAprofileoftheHAwholemealandstarchalsodifferedfromthenormal.Thepeakviscosity,minimumviscosity,andfinalviscosityofHAwerelow,andbreakdown(peakminusminimumviscosity)wasverysmall.ThesefindingsshowthatamountofresistantstarchandpastingpropertiesareuniqueintheHAwheatstarch,probablycausedbylackofstarchsynthaseIIa.Effectsofprocessvariablesandadditionofpolydextroseandwheyproteinisolateonthepropertiesofbarleyextrudates.Kirjoranta,S.,Solala,K.,Suuronen,J.P.,Penttilä,P.,Peura,M.,Serimaa,R.,Tenkanen,M.&Jouppila,K.(2012).InternationalJournalofFoodScience&Technology,47(6),1165-1175.LinktoArticleReadAbstractExtrusioncookingiscommonlyusedintheproductionofsnacks.Inthepresentstudy,extrudateswerepreparedusingbarleyflouraloneandwiththeadditionofeitherpolydextrose(PD)orwheyproteinisolate(WPI)andbothPDandWPI.Independentprocessvariableswerewatercontentofthemass(17%,20%and23%),screwspeed(200,350and500rpm)andtemperatureofsection6anddie(110,130and150°C).Expansion,hardness,watercontent,porosityandchemicalcompositionoftheextrudateswereanalysed.HighlyporousandexpandedsnackproductswithhighdietaryfibreandproteincontentswereobtainedfrombarleyflourandWPIwhenwatercontentofmasswas17%,screwspeed500rpmandtemperatureofsection6anddie130°C.BarleyflouraloneorwithPDresultedinhardandnon-expandedextrudates.Expansionofextrudateswasstatisticallysignificantlyincreasedwithdecreasingwatercontentofthemassandincreasingscrewspeedinalltrials.EliminationofresistantstarchtypeIIwithintheframeworkoftotalstarchanddietaryfibreanalysisbymicrowaveirrADIation.Themeier,H.,Hollmann,J.,Neese,U.&Lindhauer,M.G.(2010).QualityAssuranceandSafetyofCrops&Foods,2(1),46-51.LinktoArticleReadAbstractIntroductionThepresenceofresistantstarchinsamplescontainingnon-starchpolysaccharideshasalwaysbeenachallengetoenzymatictotalstarchandtotalfibreanalysis.ObjectiveandmethodsBasedonmicrowave-inducedpressuredisintegrationtechniquetheAssociationofOfficialAnalyticalChemistsmethodsforthedeterminationoftotalstarch(AOAC996.11)andtotaldietaryfibre(AOAC991.43)havebeenmodifiedtocompletelyeliminateundesirableresistantstarchfractionswithrespecttodigestionproceduresusingthermostableα-amylaseandamyloglucosidase.ResultsMicrowavetreatmentofhigh-amylosestarchsamplesresultedinexcellenttotalstarchrecoveryintheAssociationofOfficialAnalyticalChemistsstandardmethodno.996.11.AfterintegrationofmicrowavedisintegrationtechniqueintothetotaldietaryfibremethodAOAC911.43irradiationexperimentswithdifferentmodelmixturesconsistingofnon-starchpolysaccharidescomponentsandhigh-amylosestarchfractionsresultedinthecompleteeliminationofundesirableresistantstarchfractions.ConclusionThereforethemicrowavetechniquecanbeaveryefficientmeansfortheeliminationofresistantstarchandprovidesmorerealisticvaluesinanalyticaltotaldietaryfibreprocedureswithrespecttosamplescontainingcriticalenzymeresistantstarches.ResistantstarchinMicronesianbananacultivarsoffershealthbenefits.Thakorlal,J.,Perera,C.O.,Smith,B.,Englberger,L.&Lorens,A.(2010).PacificHealthDialog,16(1),49-59.LinktoArticleReadAbstractResistantStarch(RS)isatypeofstarchthatisresistanttostarchhydrolyzingenzymesinthestomachandthusbehavesmorelikedietaryfibre.RShasbeenshowntohavebeneficialeffectsindiseasepreventionincludingmodulationofglycaemicindexdiabetes,cholesterolloweringcapabilityandweightmanagement,whicharecriticallyimportantformanypeopleintheFederatedStatesofMicronesia.GreenbananasareknowntocontainsubstantialconcentrationsofRSandareacommonpartoftheMicronesiandiet.ThereforetheaimofthisstudywastodeterminetheRScontentinbananacultivarsfromPohnpei,Micronesia:Daiwang,Inahsio,Karat,UtinKerenisandUtinRuk,forwhichnosuchinformationwasavailable.UtinKerenis,InahsioandUtinRukwerefoundtocontainthehighestamountsofRS.ThefateofRSafterincorporationintoafoodproduct(i.e..pancakes)wasalsostudiedandasignificantreductionintheRScontentwasfoundforeachcultivaraftercooking.Microscopyofthebananasamplesindicatedthattheoverallmorphologyofthecultivarswassimilar.Inconclusion,greenbanana,includingthesevarieties,shouldbepromotedinMicronesiaandotherplacesfortheirrichRScontentandrelatedhealthbenefitsincludingdiabetescontrol.FurtherresearchisneededtomoreclearlydeterminetheeffectsofcookingandfoodprocessingonRS.Enzymesusceptibilityofhigh-amylosestarchprecipitatedfromsodiumhydroxidedispersions.Evans,A.&Thompson,D.B.(2008).CerealChemistry,85(4),480-487.LinktoArticleReadAbstractTypeIIIresistantstarch(RS)isunderstoodtobeduetotheorderedstructureformationintheprocessofretrogradation.Mosttreatmentsofgranularhigh-amylosemaizestarch(HAMS)donotcompletelyeliminatetheoriginalorderedstructure.WehypothesizedthatresidualorderedstructurewouldconstrainsubsequentphysicalreassociationofchainsandtheformationofRS.Theobjectivewastogeneratedifferencesinenzymesusceptibilityusingtwomeansofprecipitationoffullydispersedstarchandtorelatedifferencesinenzymesusceptibilitytothestructureoftheprecipitates.Dispersionsinsodiumhydroxidewereprecipitatedeitherwithethanolorammoniumsulfate.RSandthetimecourseofdigestionweredetermined.Crystallinityandhelicitywereestimatedusingwide-angleX-raydiffractionandsolid-state13CCP/MASNMR,respectively.PrecipitationofwholestarchwithethanolledtolowerRSvalues(≈24%)thanprecipitationwithammoniumsulfate(≈39%)andalsotohigherreactionrateconstantsforanearlycomponentofdigestion.EthanolprecipitationofabranchedstarchfractiongaveessentiallynoRS,whereasammoniumsulfateprecipitationofthesamebranchedmaterialhad>20%RS.Ethanolprecipitatescontainedsinglehelices,inmostbutnotallcases,contributingtoV-typecrystallinity.AmmoniumsulfateprecipitateshaddoublehelicescontributingtoB-typecrystallinity.Invitrofermentationofspentturmericpowderwithamixedcultureofpigfaecalbacteria.Han,K.H.,Azuma,S.&Fukushima,M.(2014).Food&Function,10,2446-2452.LinktoArticleReadAbstractThefermentationpotentialofspentturmericwasstudiedininvitroswinefaecalbatchcultures.Thespentturmericresidue(theenzyme-resistantfractionfromspentturmeric,EST)wasobtainedthroughtheuseofthedigestiveenzymesamyloglucosidaseandpancreatinandcomparedtocelluloseandhigh-amylosestarch(HAS)ascarbonsources.ESTshowedsignificantincreasesintotalanaerobes,bifidobacteria,lactobacilliandlacticacidbacteriapopulationscomparedtocelluloseat12,24and48h,andthetotalanaerobiclevelintheHASgroupwassignificantlyhigherthaninthecellulosegroupat24and48h.However,asignificantdecreaseinthecoliformpopulationwasonlyfoundintheHASgroupcomparedtothecellulosegroupat48h.Thetotalshort-chainfattyacid(SCFA)concentrationsintheESTandHASgroupsweresignificantlyhigherthanthatinthecellulosegroupat12hand48h.However,therewasnosignificantdifferenceinthetotalSCFAconcentrationbetweentheESTandHASgroupsat12hand48h.AmmoniaandpHlevelsintheESTandHASgroupsweresignificantlylowerthanthoseinthecellulosegroupat24and48h,buttherewasnosignificantdifferencebetweentheESTandHASgroups.Theseresultsindicatethatthefermentationpotentialoftheenzyme-resistantfractionfromspentturmericiscomparabletothatofcommerciallyestablishedresistantstarch.Impactofancientcereals,pseudocerealsandlegumesonstarchhydrolysisandantiradicalactivityoftechnologicallyviableblendedbreads.Collar,C.,Jiménez,T.,Conte,P.&Fadda,C.(2014).CarbohydratePolymers,113,149-158.LinktoArticleReadAbstractWheatflourreplacementfrom22.5%upto45%byincorporationofternaryblendsofteff(T),greenpea(GP)andbuckwheat(BW)floursprovidedtechnologicallyviableandacceptablesensoryratedmultigrainbreadswithsuperiornutritionalvaluecomparedtothe100%wheatflour(WT)counterparts.Blendedbreadsexhibitedsuperiornutritionalcomposition,largeramountsofbioaccessiblepolyphenols,higheranti-radicalactivity,andlowerandslowerstarchdigestibility.Simultaneouslowerrapidlydigestiblestarch(57.1%)andhigherslowlydigestiblestarch(12.9%)andresistantstarch(2.8%)contents(gper100gfreshbread),consideredsuitablenutritionaltrendsfordietarystarchfractions,weremetbytheblendformulated7.5%T,15%GP,15%BK.Theassociatedmixturethatreplaced37.5%WT,showedaratherlowerextentandslowerrateofstarchhydrolysiswithmedium-lowvaluesforC∞,andH90,andlowestk,andintermediateexpectedGlycaemicIndex(86).Allmultigrainbreadscanbelabelledassourceofdietaryfibre(≥3gdietaryfibre/100gbread).CharacterizationandPrebioticEffectoftheResistantStarchfromPurpleSweetPotato.Zheng,Y.,Wang,Q.,Li,B.,Lin,L.,Tundis,R.,Loizzo,M.R.,Zheng,B.&Xiao,J.(2016).Molecules,21(7),932.LinktoArticleReadAbstractPurplesweetpotatostarchisapotentialresourceforresistantstarchproduction.Theeffectsofheat-moisturetreatment(HMT)andenzymedebranchingcombinedheat-moisturetreatment(EHMT)onthemorphological,crystallinityandthermalpropertiesofPSPstarcheswereinvestigated.Theresultsindicatedthat,afterHMTorEHMTtreatments,nativestarchgranuleswithsmoothsurfacewasdestroyedtoformamorecompact,irregularandsheet-likestructure.ThecrystallinepatternwastransformedfromC-typetoB-typewithdecreasingrelativecrystallinity.Duetostrongercrystallitesformedinmodifiedstarches,theswellingpowerandsolubilityofHMTandEHMTstarchweredecreased,whilethetransitiontemperaturesandgelatinizationenthalpyweresignificantlyincreased.Inaddition,HMTandEHMTexhibitedgreatereffectsontheproliferationofbifidobacteriacomparedwitheitherglucoseorhighamylosemaizestarch.Metabolomicandtranscriptomicresponsesinducedintheliversofpigsbythelong-termintakeofresistantstarch.Metabolomicandtranscriptomicresponsesinducedintheliversofpigsbythelong-termintakeofresistantstarch.Sun,Y.,Yu,K.,Zhou,L.,Fang,L.,Su,Y.&Zhu,W.(2016).Journalofanimalscience,94(3),1083-1094.LinktoArticleReadAbstractThepresentstudyinvestigatedmetabolomicandtranscriptomicresponsesintheliversofpigstoevaluatetheeffectsofresistantstarchonthebody’smetabolismattheextraintestinallevel.Thirty-sixDuroc×Landrace×LargeWhitegrowingbarrows(70dofage)wererandomlyallocatedtoeitherthecornstarch(CS)grouportherawpotatostarch(RPS)groupwitharandomizedcompleteblockdesign;eachgroupconsistedof6replicates(pens),with3pigsperpen.PigsintheCSgroupwereofferedacorn–soybean–baseddiet,whereaspigsintheRPSgroupwereputonadietinwhich230(growing)or280g/kg(finishing)purifiedCSwasreplacedwithpurifiedRPSduringa100-dtrial.Theliversofpigswerecollectedformetabolomeandgeneexpressionanalysis.Gaschromatography–massspectrometryanalysisshowedthatcomparedwiththeCSdiet,theRPSdietdecreased(PPPPtransmembraneglycoproteinclusterofdifferentiation36(CD36),carnitinepalmitoyltransferase1B(CPT1B),andmedium-chainacyl-CoAdehydrogenase(ACADM)weredownregulated(P1-acylglycerol-3-phosphateO-acyltransferase4(AGPAT4),glycerol-3-phosphateacyltransferase(GPAT),andfattyacidbindingprotein1(FABP1)wereupregulated(PValidationofMethodsAACCMethod32-40.01AOACMethod2002.02CODEXMethodTypeIIColourimetricmethodforthedeterminationofResistantStarchincerealproductsandfeedsPrinciple:               (α-amylase+amyloglucosidase)(1)Non-resistantstarch+H2O→D-glucose+maltose(trace)(2)Aqueousethanolwash+centrifugationtoremoveD-glucose+   maltose(3)DissolutionofresistantstarchpelletinKOHandneutralisation                     (α-amylase+amyloglucosidase)(4)Dissolvedresistantstarch+H2O→D-glucose                (glucoseoxidase)(5)D-Glucose+H2O+O2→D-gluconate+H2O2                                          (peroxidase)(6)2H2O2+p-hydroxybenzoicacid+4-aminoantipyrine→                                     quinoneimine+4H2OKitsize:                        100assaysMethod:                         Spectrophotometricat510nmReactiontime:                 ~120min(plusovernightincubation)Detectionlimit:                2-100%ofsampleweightApplicationexamples:Plantmaterials,starchsamplesandothermaterialsMethodrecognition:   AOAC(Method2002.02),AACC(Method32-40.01)andCODEX(TypeIIMethod)AdvantagesVerycosteffective Allreagentsstablefor>2yearsafterpreparation Onlyenzymatickitavailable Measuresenzymeresistantstarch Simpleformat Mega-Calc™softwaretoolisavailablefromourwebsiteforhassle-freerawdataprocessing Standardincluded

Megazyme品牌产品简介

来源:作者:人气:2149发表时间:2016-05-19 10:59:00【  
Megazyme检测试剂盒 - 用于食品、饲料、乳制品、葡萄酒分析
Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
Megazyme检测试剂盒产品◆ 检测试剂盒
◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号 中文品名 用途
K-ACETAF 乙酸[AF法]检测试剂盒 酶法定量分析乙酸最广泛使用的方法
K-ACHDF 可吸收糖/膳食纤维检测试剂盒 酒精沉淀法测定膳食纤维
K-AMIAR 氨快速检测试剂盒 用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。
K-AMYL 直链淀粉/支链淀粉检测试剂盒 谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测
K-ARAB 阿拉伯聚糖检测试剂盒 果汁浓缩液中阿拉伯聚糖的检测
K-ASNAM L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒 用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析
K-ASPTM 阿斯巴甜检测试剂盒 专业用于测定饮料和食品中阿斯巴甜含量,操作简单
K-BETA3 β-淀粉酶检测试剂盒 适用于麦芽粉中β-淀粉酶的测定
K-BGLU 混合键β-葡聚糖检测试剂盒 测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量
K-CERA α-淀粉酶检测试剂盒 谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定
K-CITR 柠檬酸检测试剂盒 快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量
K-DLATE 乳酸快速检测试剂盒 快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量
K-EBHLG 酵母β-葡聚糖酶检测试剂盒 用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖
K-ETSULPH 总亚硫酸检测试剂盒 测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法
K-FRGLMQ D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒 适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。
K-FRUC 果聚糖检测试剂盒 含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。
K-FRUGL D-果糖/D-葡萄糖检测试剂盒 对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。
K-GALM 半乳甘露聚糖检测试剂盒 食品和植物产品中半乳甘露聚糖的含量检测
K-GLUC D-葡萄糖[GOPOD]检测试剂盒 谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUHK D-葡萄糖[HK]检测试剂盒 植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUM 葡甘聚糖检测试剂盒 植物和食品中葡甘聚糖的含量测定。
K-INTDF 总膳食纤维检测试剂盒 总膳食纤维特定检测和分析
K-LACGAR 乳糖/D-半乳糖快速检测试剂盒 用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖
K-LACSU 乳糖/蔗糖/D-葡萄糖检测试剂盒 混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定
K-LACTUL 乳果糖检测试剂盒 特异性、快速和灵敏测量奶基样品中乳果糖含量
K-MANGL D-甘露糖/D-果糖/D-葡萄糖检测试剂盒 适合测定植物产品和多糖酸性水解产物中D-甘露糖含量
K-MASUG 麦芽糖/蔗糖/D-葡萄糖检测试剂盒 在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测
K-PECID 胶质识别检测试剂盒 食品配料中果胶的鉴别
K-PHYT 植酸(总磷)检测试剂盒 食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析
K-PYRUV 丙酮酸检测试剂盒 在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析
K-RAFGA 棉子糖/D-半乳糖检测试剂盒 快速测量植物材料和食品中棉子糖和半乳糖含量
K-RAFGL 棉子糖/蔗糖/D-半乳糖检测试剂盒 分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定
K-SDAM 淀粉损伤检测试剂盒 谷物面粉中淀粉损伤的检测和分析
K-SUCGL 蔗糖/D-葡萄糖检测试剂盒 饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析
K-SUFRG 蔗糖/D-果糖/D-葡萄糖检测试剂盒 适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定
K-TDFR 总膳食纤维检测试剂盒 总膳食纤维检测
K-TREH 海藻糖检测试剂盒 快速、可靠地检测食品、饮料和其它物料中海藻糖含量
K-URAMR 尿素/氨快速检测试剂盒 适用于水、饮料、乳制品和食品中尿素和氨的快速测定
K-URONIC D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒 简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸)
K-XYLOSE D-木糖检测试剂盒 简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量
K-YBGL Beta葡聚糖[酵母和蘑菇]检测试剂盒 检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量
客服在线
service-logo
已有 人查看该问题
tel
全国免费服务热线
4000-520-616
微信公众号
关注我们
手机扫码,关注动态