

提醒:代购产品,无质量问题不接受退换货,下单前请仔细核对信息。下单后请及时联系客服
核对商品价格,订单生效后再付款。
Megazyme/Total Starch Assay Kit (AA/AMG) /K-TSTA-100A/100 assays
价格:
自营商城
解放采购
正品保障
及时交付
厂家直采
一站服务
货号:
品牌:
会员服务:
尊享会员价
贵宾专线
运费优惠
闪电退款
福利优惠
上门换新
友情提示
以上价格仅为参考,请联系客服询价。
免费咨询热线
4000-520-616
产品说明
TheTotalStarch(AA/AMG)testkitisusedforthemeasurement andanalysisoftotalstarchincerealfloursandfoodproducts. Thiskitnowcontainsanimprovedα-amylasethatallowstheamylaseincubationstobeperformedatpH5.0(aswellaspH7.0). DatacalculatorsarelocatedintheTechnicalResourcestab.Quantitativemeasurementoftotalstarchincerealfloursandproducts.McCleary,B.V.,Solah,V.&Gibson,T.S.(1994).JournalofCerealScience,20(1),51-58.LinktoArticleReadAbstractArapidandquantitativemethodhasbeendevelopedforthedeterminationoftotalstarchinawiderangeofmaterials,includinghigh-amylosemaizestarchesandfoodmaterialscontainingresistantstarch.Themethodallowstheanalysisof20samplesin3h.Asingleassaycanbeperformedin2h.Forarangeofsamples,thetotalstarchvaluesobtainedwiththismethodweresignificantlyhigherthanthoseobtainedwithcurrentstandardmethods.Twoassayformatshavebeendeveloped.Inassayformat1,thesampleisincubatedsolubilisedwiththechaotropicagentdimethylsulphoxide(DMSO)togelatinisethestarch,whichisthensolubilisedandpartiallydepolymerisedbycontrolledincubationat∼100°CwithadefinedlevelofThermostablealpha-amylase.Thisallowednear-completesolubilisationofmoststarches.Theremainingstarchisthensolubilisedandthestarchfragmentsareconvertedtomaltoseandmaltotriosebythecombinedactionofhighlypurifiedpullulanaseandbeta-amylase.Aftervolumeadjustmentandfiltration(ifnecessary),themaltooligo-saccharidesarehydrolysedbyhigh-purityamyloglucosidasetoglucose,whichismeasuredwithaglucoseoxidase/peroxidasereagent.Thisassayformatgavequantitativestarchdeterminationinallnativestarchsamples,includinghigh-amylosemaizestarches.Inassayformat2,whichisapplicabletomoststarchesandcerealflours,theDMSOpre-treatmentstepisomitted.Samplescontainingglucoseand/ormaltosaccharidearepre-washedwithaqueousethanolbeforeanalysis.Totalstarchmeasurementincerealproducts:interlaboratoryevaluationofarapidenzymictestprocedure.McCleary,B.V.,Gibson,T.S.,Solah,V.&Mugford,D.C.(1994).CerealChemistry,71(5),501-505.LinktoArticleReadAbstractTheprecisionofanenzymaticprocedureforanalysisoftotalstarchincerealfloursandproductswasdeterminedinacomprehensiveinter-laboratorystudyinvolving29laboratories.Testsamplesrepresentedarangeofsampletypes,includingmodifiedandnativestarches,cerealfloursandbrans,processedcerealproducts,animalfeeds,andplantmaterial.ResultswerestatisticallyanalyzedaccordingtoAOACguidelines.Theprocedurewasshowntobehighlyrepeatable(relativestandarddeviation1.5-7.3%)andreproducIBLe(relativestandarddeviation4.1-11.3%).Itisnowavailable,inaslightlymodifiedform,asanassaykit.Theassay,therefore,providesaconvenientalternativetoexistingproceduresforquantitativemeasurementofstarchincerealproducts.Collaborativeevaluationofasimplifiedassayfortotalstarchincerealproducts(AACCMethod76-13).McCleary,B.V.,Gibson,T.S.&Mugford,D.C.(1997).CerealFoodsWorld,42,476-480.LinktoArticleReadAbstractAprocedureforthequantitativeanalysisoftotalstarchinplantmaterialshasbeendevelopedandsubjectedtoacomprehensiveinterlaboratorystudyinvolving32laboratories,inaccordancewiththeprotocolforcollaborativestudiesrecommendedbyAmericanAssociationofCerealChemistsandAOACInternational.Themethodinvolvedtreatmentofasampleatapproximately95°Cwiththermostableα-amylasetoobtainstarchdepolymerizationandsolubilisation.Theslurryisthentreatedwithpurifiedamyloglucosidasetogivequantitativehydrolysisofthestarchfragmentstoglucose,whichismeasuredwithglucoseoxidase/peroxidasereagent.Testsamplesusedintheinterlaboratorystudyincludedmodifiedandnativestarches,cerealfloursandbrans,processedcerealproducts,animalfeeds,andplantmaterial.ResultswerestatisticallyanalysedaccordingtoAOACInternationalguidelines(1).Theprocedurewasshowntobehighlyrepeatable(relativestandarddeviation2.1-3.9%)andreproducible(relativestandarddeviation2.9-5.0%),andonthebasisoftheseresultshasgainedfirstapprovalstatuswithAACC(AACCMethod76-13)andapprovalasAOACMethod986.11.Themethodismorerobustthanamethodpreviouslyreported(AACCMethod76-12),and20samplescanbeanalysedwithin2hr.Measurementoftotalstarchincerealproductsbyamyloglucosidase-alpha-amylasemethod:collaborativestudy.McCleary,B.V.,Gibson,T.S.&Mugford,D.C.(1997).JournalofAOACInternational,80,571-579.LinktoArticleReadAbstractAnAmericanAssociationofCerealChemists/AOACcollaborativestudywasconductedtoevaluatetheaccuracyandreliABIlityofanenzymeassaykitprocedureformeasurementoftotalstarchinarangeofcerealgrainsandproducts.Thefloursampleisincubatedat95degreesCwiththermostablealpha-amylasetocatalyzethehydrolysisofstarchtomaltodextrins,thepHoftheslurryisadjusted,andtheslurryistreatedwithahighlypurifiedamyloglucosidasetoquantitativelyhydrolyzethedextrinstoglucose.Glucoseismeasuredwithglucoseoxidase-peroxidasereagent.Thirty-twocollaboratorsweresent16homogeneoustestsamplesas8blindduplicates.Thesesamplesincludedchickenfeedpellets,whitebread,greenpeas,high-amylosemaizestarch,whitewheatflour,wheatstarch,oatbran,andspaghetti.Allsampleswereanalyzedbythestandardprocedureasdetailedabove;4samples(high-amylosemaizestarchandwheatstarch)werealsoanalyzedbyamethodthatrequiresthesamplestobecookedfirstindimethylsulfoxide(DMSO).Relativestandarddeviationsforrepeatability(RSD(r))rangedfrom2.1to3.9%,andrelativestandarddeviationsforreproducibility(RSD(R))rangedfrom2.9to5.7%.TheRSD(R)valueforhighamylosemaizestarchanalyzedbythestandard(non-DMSO)procedurewas5.7%;thevaluewasreducedto2.9%whentheDMSOprocedurewasused,andthedeterminedstarchvaluesincreasedfrom86.9to97.2%.Measurementofcarbohydratesingrain,feedandfood.McCleary,B.V.,Charnock,S.J.,Rossiter,P.C.,O’Shea,M.F.,Power,A.M.&Lloyd,R.M.(2006).JournaloftheScienceofFoodandAgriculture,86(11),1648-1661.LinktoArticleReadAbstractProceduresforthemeasurementofstarch,starchdamage(gelatinisedstarch),resistantstarchandtheamylose/amylopectincontentofstarch,β-glucan,fructan,glucomannanandgalactosyl-sucroseoligosaccharides(raffinose,stachyoseandverbascose)inplantmaterial,animalfeedsandfoodsaredescribed.Mostofthesemethodshavebeensuccessfullysubjectedtointerlaboratoryevaluation.AllmethodsarebasedontheuseofenzymeseitherpurifiedbyconventionalchromatographyorproducedusingmolecularBIOLOGytechniques.Suchmethodsallowspecific,accurateandreliablequantificationofaparticularcomponent.Problemsincalculatingtheactualweightofgalactosyl-sucroseoligosaccharidesintestsamplesarediscussedindetail.Sourdoughbread:Starchdigestibilityandpostprandialglycemicresponse.Scazzina,F.,DelRio,D.,Pellegrini,N.&Brighenti,F.(2009).JournalofCerealScience,49(3),419-421.LinktoArticleReadAbstractToevaluatetheinfluenceofsourdoughfermentationonstarchdigestibilityinbread,fourexperimentalbreadswereobtained,preparedfromtwodifferentwheatflours(wholeorwhite)bytwodifferentleaveningtechniques(sourdoughandwithSaccharomycescerevisiae).Productswereanalyzedfortheirstarch,fiberandresistantstarch(RS)contentandthensubmittedtoinvitrohydrolysiswithporcinealpha-amylase.Onthesamebreads,postprandialbloodglucosewasevaluatedinhealthyhumansubjects.Bothsourdoughfermentedbreadsgaveglycaemicresponsessignificantlylower(pS.cerevisiae.Onthecontrary,thepresenceoffiberdidnotinfluencetheglycaemicpotentialofbreads.RSlevelswerehigherinthesourdoughproducts,whereasnodifferenceswereobservedeitherintherateofstarchhydrolysisorinthedegreeofpolymerizationofthestarchresiduesaftertheinvitrohydrolysis.Wemayconcludethatsourdoughfermentationisatechniqueabletoreducetheglycaemicresponsetobreadandthatthemechanismdoesnotseemrelatedtotherateofstarchhydrolysis.Strain,biochemistry,andcultivation-dependentmeasurementvariabilityofalgalbiomasscomposition.Laurens,L.M.,VanWychen,S.,McAllister,J.P.,Arrowsmith,S.,Dempster,T.A.,McGowen,J.&Pienkos,P.T.(2014).AnalyticalBiochemistry,452,86-95.LinktoArticleReadAbstractAccuratecompositionalanalysisinbiofuelfeedstocksisimperative;theyieldsofindividualcomponentscandefinetheeconomicsofanentireprocess.Inthenascentindustryofalgalbiofuelsandbioproducts,analyticalmethodsthathavebeendeemedacceptablefordecadesaresuddenlycriticalforcommercialization.Wetackledthequestionofhowthestrainandbiochemicalmakeupofalgalcellsaffectchemicalmeasurements.Weselectedasetofsixprocedures(twoeachforlipids,protein,andcarbohydrates):threerapidfingerprintingmethodsandthreeadvancedchromatography-basedmethods.Allmethodswereusedtomeasurethecompositionof100samplesfromthreestrains:Scenedesmussp.,Chlorellasp.,andNannochloropsissp.Thedatapresentedpointnotonlytospecies-specificdiscrepanciesbutalsotocellbiochemistry-relateddiscrepancies.Therearecaseswheretworespectivemethodsagreebutthedifferencesareoftensignificantwithover-orunderestimationofupto90%,likelyduetochemicalinterferenceswiththerapidspectrophotometricmeasurements.Weprovidebackgroundonthechemistryofinterferingreactionsforthefingerprintingmethodsandconcludethatforaccuratecompositionalanalysisofalgaeandprocessandmassbalanceclosure,emphasisshouldbeplacedonunambiguouscharacterizationusingmethodswhereindividualcomponentsaremeasuredindependently.Productionofhigh-starchduckweedanditsconversiontobioethanol.Xu,J.,Cui,W.,Cheng,J.J.&Stomp,A.M.(2011).Biosysystemsengineering,110(2),67-72.LinktoArticleReadAbstractGrowinghigh-starchduckweedforitsconversiontobioethanolwasinvestigatedasanoveltechnologytosupplementmaize-basedethanolproduction.Underthefall(autumn)climateconditionsofNorthCarolina,thebiomassaccumulationrateofSpirodelapolyrrhizagrowninapilot-scaleculturepondusingdilutedpigeffluentwas12.4gdryweightm-2day-1.Throughsimpletransferofduckweedplantsintowellwaterfor10days,theduckweedstarchcontentincreasedby64.9%,resultinginahighannualstarchyieldof9.42×103kgha-1.Afterenzymatichydrolysisandyeastfermentationofhigh-starchduckweedbiomassina14-lfermentor,94.7%ofthetheoreticalstarchconversionwasachieved.Theethanolyieldofduckweedreached6.42×103lha-1,about50%higherthanthatofmaize-basedethanolproduction,whichmakesduckweedacompetitivestarchsourceforfuelethanolproduction.Highhydrostaticpressureinfluencesantinutritionalfactorsandinvitroproteindigestibilityofsplitpeasandwholewhitebeans.Linsberger-Martin,G.,Weiglhofer,K.,ThiPhuong,T.P.&Berghofer,E.(2013).LWT-FoodScienceandTechnology,51(1),331-336.LinktoArticleReadAbstractLegumesareofhighnutritionalvaluebutconsumptionislowinWesterncountriesduetolongprocessingandantinutritionalfactors.Thedevelopmentofconvenienceproductscanhelptoovercometheseconstraints.Thepresentstudyinvestigatedtheeffectofhighhydrostaticpressureonoligosaccharides,phyticacidandtotalphenolicacidcontent,trypsininhibitoractivityandproteindigestibilityinpeasandbeans.Oligosaccharidesweresignificantlyreducedthroughpressurisationbyupto68%inpeasand48%inbeansbutreductionwaslowerthanincookedsamples(max.82%inpeasand80%inbeans).Phyticacidwasreducedbyhighpressurebyupto36%inpeasand11%inbeans.Totalphenolicacidcontentwasreducedonlyinsomepressurisedpeasandbeansascomparedtountreatedpeasandbeans.Reductionofphyticacid(max.48%)andtotalphenolicacids(max.78%)throughcookingwasgreaterthanthroughpressurisation.Trypsininhibitoractivitydecreasedbyupto100%inpeasand84%inbeansduringpressurisation.Proteindigestibilityincreasedbyupto4.3%inpeaswhentreatedat600MPaand60°Cregardlessoftimeandby8.7%inbeanstreatedat600MPaat60°Cfor60min.Effectofsupplementaryconcentratetypeonnitrogenpartitioninginearlylactationdairycowsofferedperennialryegrass-basedpasture.Whelan,S.J.,Pierce,K.M.,McCarney,C.,Flynn,B.&Mulligan,F.J.(2012).JournalofDairyScience,95(8),4468-4477.LinktoArticleReadAbstractForty-fourearlylactation(64±20dinmilk)dairycowsofmixedparitywereusedtoassesstheeffectof4supplementaryconcentratetypes(n=11)onNpartitioning.Animalswereblockedonparityandcalvingdate,andblockswerebalancedforpreviousmilkyieldandmilkproteinyield.Cowsreceivedgrazedpastureplus5.17kgofdrymatter(DM)/dofoneofthefollowingisoenergeticconcentrates:highcrudeprotein(CP)withrolledbarley(HP,19%CP);lowCPwithrolledbarley(LP,15%CP);lowCPwithbarleyandsupplementary2-hydroxy-4-methylthiobutanoicacid(HMBi;LP+HMBi,15%CP);andlowCPwithgroundcorn(LPCorn,15%CP).Nitrogenpartitioningstudieswereconductedatwk6and10postpartumbyusingthen-alkanetechniquetodeterminepasturedrymatterintake(DMI).PastureDMI(13.3kgofDM/d)anddietarydigestibilityofDMwerenotaffectedbyconcentratetype.MilkyieldwaslowerforLPcomparedwithotherconcentratetypes(25.4vs.28.3kg/d).Yieldsofmilkproteinandmilkcaseinwerenotaffectedbyconcentratetype.However,milksolidyieldandmilkfatyieldwerehigherforLP+HMBi(1.97and0.92kg/d)comparedwithLP(1.72and0.87kg/d).Concentrationsoffat,protein,lactose,andcaseinwerenotaffectedbyconcentratetype.DietaryNintakewashigherforHPcomparedwithothertreatments(0.545vs.0.482kg/d,HPvs.averageofthe3LPtreatments).DietaryNintakeswerenotdifferentamonglowCPconcentrates.FecalNexcretionwasnotaffectedbyconcentratetype.However,urinaryNexcretionwasrelatedtoNintakeandwashigherforHPcomparedwithothertreatments(0.261vs.0.195kg/d,HPvs.averageofthe3LPtreatments).UrinaryNexcretionwasnotdifferentamonglowCPconcentrates.MilkNoutputwashigherforHP(0.139kg/d)comparedwithLP(0.12kg/d)butnotLP+HMBi(0.137kg/d)orLPCorn(0.138kg/d).TheportionoffeedNexcretedasfecesNwaslowerforHPcomparedwithothertreatments(0.272vs.0.327,HPvs.averageofthe3LPtreatments.However,theportionoffeedNexcretedasurineNwashigherforHP(0.466)comparedwithLP+HMBi(0.408)andLPCorn(0.366)butnotcomparedwithLP.TheportionoffeedNexcretedasmilkNwashigherforLPCorn(0.282)comparedwithHP(0.257)butnotLP+HMBiorLP.DietaryreformulationtoreduceNexcretioninpasture-baseddairyproductionsystemsispossible.However,maintenanceofmilkyieldandmilkNwhenconcentrateCPwasreduced(19vs.15%)requiredtheuseofeitherprotectedAA(HMBi)orgroundcorn.Brewer’sspentgrainasafunctionalingredientforbreadsticks.Ktenioudaki,A.,Chaurin,V.,Reis,S.F.&Gallagher,E.(2012).InternationalJournalofFoodScience&Technology,47(8),1765-1771.LinktoArticleReadAbstractBrewer’sspentgrain(BSG)wasevaluatedforitspotentialasafunctionalbakingingredient.Scanningelectronmicroscopy(SEM)wasusedtoexaminethemicrostructureofBSGandwheatflours.Bakedsnacks(breadsticks)werepreparedusing15%,25%and35%BSGandevaluatedfortheirbakingqualityandfibreandproteincontent(overaperiodof3months).TheadditionofBSGalteredthebakingcharacteristicsofthebreadsticksbyaffectingtheirstructureandtexture.Thesnacksappearedtolackincellularstructureandcrispiness.However,theyhadquiteastableshelf-life,aschangesintexture,moistureandaWprogressedatalowrate.Additionof25%and35%BSGsignificantlyincreasedtheproteincontentofthesnacks,andadditionof15%BSGmorethandoubledthecontentofdietaryfibreinthesamplesEffectofforagesourceandasupplementarymethioninehydroxyanalogonnitrogenbalanceinlactatingdairycowsofferedalowcrudeproteindiet.Whelan,S.J.,Mulligan,F.J.,Flynn,B.,McCarney,C.&Pierce,K.M.(2011).JournalofDairyScience,94(10),5080-5089.LinktoArticleReadAbstractFourprimiparousand4multiparousmidlactationdairycowswerestratifiedbypre-experimentalmilkyield(23.5±2.3kg/d),proteinyield(0.75±0.066kg/d),parity,anddaysinlactation(121±10d)into4groupsof2ina2×2factorial,Latinsquaredesign(n=8)toassesstheeffectofforagesourceandasupplementarymethioninehydroxyanalogonnitrogen(N)balancewherelowcrudeprotein(CP)diets(13.3%)areoffered.Dietscontainedeitherpredominantlygrasssilage[GS(G−andG+)]orcornsilage[CS(C−andC+)]astheforagesourceandwereofferedwith(G+andC+)orwithout(G−andC−)theisopropylesterof2-hydroxy-4methylthiobutanoicacid(HMBi).TheG−andG+contained46%GSand10%CSinthedrymatter(DM),whereasC−andC+contained12%GSand52%CSintheDM.SupplementaryHMBiwasincludedatarateof0.2%ofDMinG+andC+diets.Dietswereisonitrogenous(9.8±0.4%proteintrulydigestedinthesmallintestine)andisoenergetic(0.96±0.01unitsofenergyforlactation;kg/DM).Eachofthe4experimentalperiodslasted24d:14dfordietaryadaptation,followedby10dofhousinginindividualmetabolismstalls;Nbalancewasconductedonthelast5dofeachexperimentalperiod.IntakeofDMwashigherforCS-basedvs.GS-baseddiets(20.23vs.18.41kg/d).Noeffectofdietarytreatmentwasfoundonmilkyieldoryieldsofmilkfat,protein,andlactose.SupplementingwithHMBitendedtoimprovemilksolidsyield(1.69vs.1.59kg/d),caseinyield(0.59vs.0.55kg/d),andconcentrationsofcasein(2.89vs.2.73%)andprotein(3.58vs.3.49%)inthemilk.DietaryNintakewashigherforCS-basedvs.GS-baseddiets(0.460vs.0.422kg/d).However,foragesourceorsupplementaryHMBihadnoeffectonNexcretioninthefeces,urine,ormilk.ExcretionofurinaryureawaspositivelyrelatedtoNintake.ConcentrationsofureaNintheplasma(2.34vs.1.72mmol/L),milk(2.54vs.2.24mmol/L),andurine(123.32vs.88.79mmol/L),andtotalexcretionofurinaryureaN(40.23vs.35.09g/d)werehigherforanimalsofferedCS-basedvs.GS-baseddiets.CornsilageimprovedNintakethroughimprovedDMintake.However,neitherforagesourcenorHMBisupplementationaffectsNoutputinthefeces,urine,ormilk.AnalysisofADP-glucosepyrophosphorylaseexpressionduringturionformationinducedbyabscisicacidinSpirodelapolyrhiza(greaterduckweed).Wang,W.&Messing,J.(2012).BMCplantbiology,12(1),5.LinktoArticleReadAbstractBackground:Aquaticplantsdifferintheirdevelopmentfromterrestrialplantsintheirmorphologyandphysiology,butlittleisknownaboutthemolecularbasisofthemajorphasesoftheirlifecycle.Interestingly,inplaceofseedsofterrestrialplantstheirdormantphaseisrepresentedbyturions,whichcircumventssexualreproduction.However,likeseedsturionsprovideenergystorageforstartingthenextgrowingseason.Results:Tobeginacharacterizationofthetransitionfromthegrowthtothedormantphaseweusedabscisicacid(ABA),aplanthormone,toinducecontrolledturionformationinSpirodelapolyrhizaandinvestigatedtheirdifferentiationfromfronds,representingtheirgrowthphase,intoturionswithrespecttomorphological,ultra-structuralcharacteristics,andstarchcontent.Turionswererichinanthocyaninpigmentationandhadadensitythatsubmergedthemtothebottomofliquidmedium.Transmissionelectronmicroscopy(TEM)ofturionsshowedincomparisontofrondsshrunkenvacuoles,smallerintercellularspace,andabundantstarchgranulessurroundedbythylakoidmembranes.Turionsaccumulatedmorethan60%starchindrymassaftertwoweeksofABAtreatment.Tofurtherunderstandthemechanismofthedevelopmentalswitchfromfrondstoturions,weclonedandsequencedthegenesofthreelarge-subunitADP-glucosepyrophosphorylases(APLs).Allthreeputativeproteinandexonsequenceswereconserved,butthecorrespondinggenomicsequenceswereextremelyvariablemainlyduetotheinvasionofminiatureinverted-repeattransposableelements(MITEs)intointrons.Amolecularthree-dimensionalmodeloftheSpAPLswasconsistentwiththeirregulatorymechanismintheinteractionwiththesubstrate(ATP)andallostericactivator(3-PGA)topermitconformationalchangesofitsstructure.Geneexpressionanalysisrevealedthateachgenewasassociatedwithdistincttemporalexpressionduringturionformation.APL2andAPL3werehighlyexpressedinearlierstagesofturiondevelopment,whileAPL1expressionwasreducedthroughoutturiondevelopment.Conclusions:TheseresultssuggestthatthedifferentialexpressionofAPLscouldbeusedtoenhanceenergyflowfromphotosynthesistostorageofcarboninaquaticplants,makingduckweedsausefulalternativebiofuelfeedstock.Buckwheatstarch:structure,functionalityandenzymeinvitrosusceptibilityupontheroastingprocess.Christa,K.,Soral-Smietana,M.&Lewandowicz,G.(2009).InternationalJournalofFoodSciencesandNutrition,60(s4),140-154.LinktoArticleReadAbstractStarchofdehulledbuckwheatgrainswithamoisturecontentof14.5%beforeandafterthermaltreatment(160°C/30min)wasusedinthisstudy.ThecrystalstructureofbuckwheatstarchwasoftheA-type.ThethermalprocessappliedelicitedslightchangesbothininfraredspectraandrelativecrystallinityonX-raydiffractionpatterns.Thescanningelectronmicroscopystudiesdemonstratedpolygonalandirregularshapeofstarchgranules.Afterthethermaltreatment,somebreakingsorconglomerateswerenoticedonthegranules.Theroastingprocessalsoaffectedadecreaseintheswellingpowerandsolubility.Thereleaseofglucoseandchangesinresistantstarchafterpartialhydrolysisbypancreaticα-amylaseandotherintestinalenzymeswereanalysedaswell.Thescanningelectronmicroscopyvisualizationindicatedsignificantsusceptibilityofbuckwheatstarchatthebeginning(0.5h)andduring6hinvitroamylolysis.Deficiencyofmaizestarch-branchingenzymeiresultsinalteredstarchfinestructure,decreaseddigestibilityandreducedcoleoptilegrowthduringgermination.Xia,H.,Yandeau-Nelson,M.,Thompson,D.B.&Guiltinan,M.J.(2011).BMCPlantBiology,11(1),95-107.LinktoArticleReadAbstractBackground:Twodistinctstarchbranchingenzyme(SBE)isoformspredatethedivergenceofmonocotsanddicotsandhavebeenconservedinplantssincethen.ThisstronglysuggeststhatbothSBEIandSBEIIprovideuniqueselectiveadvantagestoplants.However,nophenotypefortheSBEImutation,sbe1a,hadbeenpreviouslyobserved.Toexplorethisincongruitytheobjectiveofthepresentworkwastocharacterizefunctionalandmolecularphenotypesofbothsbe1aandwild-type(Wt)intheW64Amaizeinbredline.Results:Endospermstarchgranulesfromthesbe1amutantweremoreresistanttodigestionbypancreaticα-amylase,andthesbe1amutantstarchhadanalteredbranchingpatternforamylopectinandamylose.Whenkernelsweregerminated,thesbe1amutantwasassociatedwithshortercoleoptilelengthandhigherresidualstarchcontent,suggestingthatlessefficientstarchutilizationmayhaveimpairedgrowthduringgermination.Conclusions:ThepresentreportdocumentsforthefirsttimeamolecularphenotypeduetotheabsenceofSBEI,andsuggestsstronglythatitisassociatedwithalteredphysiologicalfunctionofthestarchinvivo.WebelievethattheseresultsprovideaplausiblerationalefortheconservationofSBEIinplantsinbothmonocotsanddicots,asgreaterseedlingvigorwouldprovideanimportantsurvivaladvantagewhenresourcesarelimited.Profilingbrewers"spentgrainforcompositionandmicrobialecologyatthesiteofproduction.Robertson,J.A.,I"Anson,K.J.A.,Treimo,J.,Faulds,C.B.,Brocklehurst,T.F.,Eijsink,V.G.H.&Waldron,K.W.(2010).LWT-FoodScienceandTechnology,43(6),890-896.LinktoArticleReadAbstractBrewers"spentgrain(BSG)isareADIlyavailable,highvolumelowcostbyproductofbrewingandisapotentiallyvaluableresourceforindustrialexploitation.ThevariationinBSGcompositionandtheimplicationsformicrobiologicalspoilagebyaresidentmicrofloramightaffectthepotentialtouseBSGasareliablefood-gradeindustrialfeedstockforvalue-addeddownstreamprocessing.FreshsamplesofBSGfromarangeof10brewerieshavebeenanalysedfortheirmicrobialandchemicalcomposition.Theresultsshowthataresidentmicrofloraofmainlythermophilicaerobicbacteria(7g-1freshweight)persistsonBSG.ThispopulationissusceptibletorapidchangebutatthepointofproductionBSGcanbeconsideredmicrobiologicallystable.Chemically,BSGisrichinpolysaccharides,proteinandlignin.Residualstarchcancontributeupto13%ofthedryweightandBSGfromlagermaltshashigherproteincontentthanthatfromale.Ingeneral,atthepointofproduction,BSGisarelativelyuniformchemicalfeedstockavailableforindustrialupgrading.DifferencesbetweenbreweriesshouldnotpresentproblemswhenconsideringBSGforindustrialexploitationbutsusceptibilitytomicrobialcolonisationisidentifiedasapotentialproblemareawhichmightrestrictitssuccessfulexploitation.Enzymaticsolubilizationofbrewers’spentgrainbycombinedactionofcarbohydrasesandpeptidases.Treimo,J.,Westereng,B.,Horn,S.J.,Forssell,P.,Robertson,J.A.,Faulds,C.B.,WaldronK.W.,BuchertJ.&Eijsink,V.G.(2009).JournalofAgriculturalandFoodChemistry,57(8),3316-3324.LinktoArticleReadAbstractBrewers’spentgrain(BSG),ahigh-volumecoproductfromthebrewingindustry,primarilycontainsproteins,barleycellwallcarbohydrates,andlignin.Tocreatenewpossibilitiesfortheexploitationofthislargebiomassstream,thesolubilizationofBSGbythecombinedactionofcarbohydrases(Depol740andEconase)andpeptidase(AlcalaseandPromod439)wasexplored.Hydrolysisprotocolswereoptimizedwithrespecttotemperature(influencingbothmicrobialcontaminationandrateofenzymatichydrolysis),pH,enzymedose,orderofenzymeaddition,andprocessingtime.Onthebasisofthisapproach,one-andtwo-stepprotocolsareproposedtaking4−8handyieldingcombinedorseparatefractionsofhydrolyzedoligosaccharidesandliberatedhydrolyzedprotein.Optimizedproceduresresultedinthesolubilizationof>80%oftheproteinaceousmaterial,upto39%ofthetotalcarbohydrates,andupto42%oftotaldrymatterinBSG.OftheoriginalxylanpresentinBSG,36%couldbesolubilized.Sequentialandsimultaneoustreatmentswiththetwoenzymetypesgavesimilarresults.Insequentialprocesses,theorderofthecarbohydraseandpeptidasetreatmentshadonlyminoreffectsontheoutcome.Depol740releasedmorepentosesthanEconaseandgaveslightlyhigheroveralldrymattersolubilizationyields.Effectofsorghumflouradditiononinvitrostarchdigestibility,cookingquality,andconsumeracceptabilityofdurumwheatpasta.Khan,I.,Yousif,A.M.,Johnson,S.K.&Gamlath,S.(2014).JournalofFoodScience,79(8),S1560-S1567.LinktoArticleReadAbstractWholegrainsorghumisavaluablesourceofresistantstarchandpolyphenolicantioxidantsanditsadditionintostaplefoodlikepastamayreducethestarchdigestibility.However,incorporatingnondurumwheatmaterialsintopastaprovidesachallengeintermsofmaintainingcookingqualityandconsumeracceptability.Pastawaspreparedfrom100%durumwheatsemolina(DWS)ascontrolorbyreplacingDWSwitheitherwholegrainredsorghumflour(RSF)orwhitesorghumflour(WSF)eachat20%,30%,and40%incorporationlevels,followingalaboratory-scaleprocedure.Pastasampleswereevaluatedforproximatecomposition,invitrostarchdigestibility,cookingquality,andconsumeracceptability.TheadditionofbothRSFandWSFloweredtheextentofinvitrostarchdigestionatallsubstitutionlevelscomparedtothecontrolpasta.Therapidlydigestiblestarchwasloweredinallthesorghum-containingpastascomparedtothecontrolpasta.NeitherRSForWSFadditionaffectedthepastaqualityattributes(waterabsorption,swellingindex,drymatter,adhesiveness,cohesiveness,andspringiness),exceptcolorandhardnesswhichwerenegativelyaffected.Consumersensoryresultsindicatedthatpastasamplescontaining20%and30%RSForWSFhadacceptablepalatabilitybasedonmeetingoneorbothofthepresetacceptabilitycriteria.Itisconcludedthattheadditionofwholegrainsorghumflourtopastaat30%incorporationlevelispossibletoreducestarchdigestibility,whilemaintainingadequatecookingqualityandconsumeracceptability.Physicochemicalpropertiesofstarchfromsago(metroxylonsagu)palmgrowninmineralsoilatdifferentgrowthstages.Uthumporn,U.,Wahidah,N.&Karim,A.A.(2014).IOPConferenceSeries:MaterialsScienceandEngineering(Vol.62,No.1,p.012026).IOPPublishing.LinktoArticleReadAbstractAstudywascarriedouttodeterminethephysico-chemicalpropertiesofsagostarchfromsagopalmgrowninmineralsoilatdifferentgrowthstages.Fourstagesofsagopalm,namely,Plawei(P),Bubul(B),AngauMuda(AM)andAngauTua(AT)werestudied.Sagostarchgranuleswereobservedbyusingscanningelectronmicroscopy(SEM)whilethex-raydiffractionpatternswereexaminedtostudythestarchcrystallinity.ThehigheststarchcontentwasfoundatPlaweistage(94.2%)andAngauMudastage(97.9%),respectively.Theamylosecontentvariedbetween29.4to31.2%foreachgrowthstages.Thehighestswellingpowerwasfoundattheearliestgrowthstages(P)lategrowthstages(AT)whichare13.3g/gand13.2g/g,respectively.Granulesizedistributionsweresimilarasthepalmgrowstothelatergrowthstages,wherehighestmeandiameterofsagostarchesgranuleswasfoundatAM.Variationofstarch,amyloseandproximatecontentwasobservedforstarchesderivedfromsagopalmdifferentgrowthstageswereinsignificant.ValidationofMethodsAACCMethod76-13.01AOACMethod996.11ICCStandardNo.168RACIStandardMethodColourimetricmethodforthedeterminationofTotalStarchincerealproducts,feeds,foodstuffsandothermaterialsPrinciple: (α-amylase,100°C±DMSO)(1)Starchgranules+H2O→maltodextrins (amyloglucosidase)(2)Maltodextrins+H2O→D-glucose (glucoseoxidase)(3)D-Glucose+H2O+O2→D-gluconate+H2O2 (peroxidase)(4)2H2O2+p-hydroxybenzoicacid+4-aminoantipyrine→ quinoneimine+4H2OKitsize: 50/100assaysMethod: Spectrophotometricat510nmTotalassaytime: ~90minDetectionlimit: 1-100%ofsampleweightApplicationexamples:Cerealflours,foodproductsandothermaterialsMethodrecognition: AOAC(Method996.11),AACC(Method76-13.01),ICC(StandardMethodNo.168)andRACI(StandardMethod)AdvantagesVerycompetitiveprice(costpertest) Allreagentsstablefor>12monthsafterpreparation Simpleformat Mega-Calc™softwaretoolisavailablefromourwebsiteforhassle-freerawdataprocessing Standardincluded
Megazyme品牌产品简介

Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
Megazyme的主要产品线包括:

◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号 | 中文品名 | 用途 |
K-ACETAF | 乙酸[AF法]检测试剂盒 | 酶法定量分析乙酸最广泛使用的方法 |
K-ACHDF | 可吸收糖/膳食纤维检测试剂盒 | 酒精沉淀法测定膳食纤维 |
K-AMIAR | 氨快速检测试剂盒 | 用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。 |
K-AMYL | 直链淀粉/支链淀粉检测试剂盒 | 谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测 |
K-ARAB | 阿拉伯聚糖检测试剂盒 | 果汁浓缩液中阿拉伯聚糖的检测 |
K-ASNAM | L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒 | 用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析 |
K-ASPTM | 阿斯巴甜检测试剂盒 | 专业用于测定饮料和食品中阿斯巴甜含量,操作简单 |
K-BETA3 | β-淀粉酶检测试剂盒 | 适用于麦芽粉中β-淀粉酶的测定 |
K-BGLU | 混合键β-葡聚糖检测试剂盒 | 测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量 |
K-CERA | α-淀粉酶检测试剂盒 | 谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定 |
K-CITR | 柠檬酸检测试剂盒 | 快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量 |
K-DLATE | 乳酸快速检测试剂盒 | 快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量 |
K-EBHLG | 酵母β-葡聚糖酶检测试剂盒 | 用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖 |
K-ETSULPH | 总亚硫酸检测试剂盒 | 测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法 |
K-FRGLMQ | D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒 | 适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。 |
K-FRUC | 果聚糖检测试剂盒 | 含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。 |
K-FRUGL | D-果糖/D-葡萄糖检测试剂盒 | 对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。 |
K-GALM | 半乳甘露聚糖检测试剂盒 | 食品和植物产品中半乳甘露聚糖的含量检测 |
K-GLUC | D-葡萄糖[GOPOD]检测试剂盒 | 谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。 |
K-GLUHK | D-葡萄糖[HK]检测试剂盒 | 植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。 |
K-GLUM | 葡甘聚糖检测试剂盒 | 植物和食品中葡甘聚糖的含量测定。 |
K-INTDF | 总膳食纤维检测试剂盒 | 总膳食纤维特定检测和分析 |
K-LACGAR | 乳糖/D-半乳糖快速检测试剂盒 | 用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖 |
K-LACSU | 乳糖/蔗糖/D-葡萄糖检测试剂盒 | 混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定 |
K-LACTUL | 乳果糖检测试剂盒 | 特异性、快速和灵敏测量奶基样品中乳果糖含量 |
K-MANGL | D-甘露糖/D-果糖/D-葡萄糖检测试剂盒 | 适合测定植物产品和多糖酸性水解产物中D-甘露糖含量 |
K-MASUG | 麦芽糖/蔗糖/D-葡萄糖检测试剂盒 | 在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测 |
K-PECID | 胶质识别检测试剂盒 | 食品配料中果胶的鉴别 |
K-PHYT | 植酸(总磷)检测试剂盒 | 食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析 |
K-PYRUV | 丙酮酸检测试剂盒 | 在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析 |
K-RAFGA | 棉子糖/D-半乳糖检测试剂盒 | 快速测量植物材料和食品中棉子糖和半乳糖含量 |
K-RAFGL | 棉子糖/蔗糖/D-半乳糖检测试剂盒 | 分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定 |
K-SDAM | 淀粉损伤检测试剂盒 | 谷物面粉中淀粉损伤的检测和分析 |
K-SUCGL | 蔗糖/D-葡萄糖检测试剂盒 | 饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析 |
K-SUFRG | 蔗糖/D-果糖/D-葡萄糖检测试剂盒 | 适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定 |
K-TDFR | 总膳食纤维检测试剂盒 | 总膳食纤维检测 |
K-TREH | 海藻糖检测试剂盒 | 快速、可靠地检测食品、饮料和其它物料中海藻糖含量 |
K-URAMR | 尿素/氨快速检测试剂盒 | 适用于水、饮料、乳制品和食品中尿素和氨的快速测定 |
K-URONIC | D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒 | 简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸) |
K-XYLOSE | D-木糖检测试剂盒 | 简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量 |
K-YBGL | Beta葡聚糖[酵母和蘑菇]检测试剂盒 | 检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量 |
新品排行榜
1
Megazyme/Amyloglucosidase (Asper...
2
Megazyme/α-Amylase (Bacill...
3
Megazyme/Arabinoxylan (Wheat Flo...
4
Megazyme/D-Xylose Assay Kit/K-XY...
5
Megazyme/MegaQuant Colorimeter T...
6
Megazyme/Wheat Arabinoxylan (enz...
7
Megazyme/Cellazyme C Tablets/T-C...
8
Megazyme/Amyloglucosidase (Asper...
9
Megazyme/Amylazyme HY Tablets/T-...
10
Megazyme/CM-Pachyman/P-CMPAC/4 g...
文章排行榜
1
Megazyme/Total Starch Assay Kit (AA/AMG) /K-TSTA-100A/100 assays
2
膳食纤维总量检测试剂盒
3
K-TSTA,淀粉总量检测试剂盒,Total Starch (AA/AMG) Assay Kit
4
Megazyme/Phytic Acid (Total Phosphorus) Assay Kit/K-PHYT/50 assays per kit
5
Megazyme/Protease (Subtilisin A from Bacillus licheniformis)/E-BSPRT-10ML/0.5 grams - 10ML
6
Megazyme/AZCL-Pachyman/I-AZPAC/3 grams
7
Megazyme/AZCL-Curdlan (fine)/I-AZCURF/3 grams
8
Megazyme/Total Dietary Fiber Controls/K-TDFC/Sufficient for 6 Controls
9
Bit_试剂_Equl意果_易扩_AdvancedBioMatrix_DivBio_Drummond_Genie_Glascol_Megazyme_Phadebas_Worthington
10
Harlan Bioproducts_试剂_Equl意果_易扩_AdvancedBioMatrix_DivBio_Drummond_Genie_Glascol_Megazyme_Phadebas_Worthington