提醒:代购产品,无质量问题不接受退换货,下单前请仔细核对信息。下单后请及时联系客服 核对商品价格,订单生效后再付款。
Megazyme/D-Fructose/D-Glucose Assay Kit/K-FRUGL/110 assays (manual) / 1100 assays (microplate) / 1100 assays (auto-analyser)
价格:

自营商城

解放采购

正品保障

及时交付

厂家直采

一站服务

货号:
品牌:
会员服务:
尊享会员价
贵宾专线
运费优惠
闪电退款
福利优惠
上门换新
友情提示
以上价格仅为参考,请联系客服询价。
免费咨询热线
4000-520-616
产品说明
D-Fructose/D-Glucosetestkit,anenzymaticUV-methodforthemeasurementandanalysisofD-fructoseand/orD-glucoseinplantandfoodproducts.ExtendedcofactorsstABIlity.Dissolvedcofactorsstablefor>1yearat 4oC.Suitableformanual,auto-analyserandmicroplateformats.Grapeandwineanalysis:Oenologiststoexploitadvancedtestkits.Charnock,S.C.&McCleary,B.V.(2005).RevuedesEnology,117,1-5.LinktoArticleReadAbstractItiswithoutdoubtthattestingplaysapivotalrolethroughoutthewholeofthevinificationprocess.ToproducethebestpossIBLequalitywineandtominimiseprocessproblemssuchas“stuck”fermentationortroublesomeinfections,itisnowrecognisedthatifpossibletestingshouldbeginpriortoharvestingofthegrapesandcontinuethroughtobottling.TrADItionalmethodsofwineanalysisareoftenexpensive,timeconsuming,requireeitherelaborateequipmentorspecialistexpertiseandfrequentlylackaccuracy.However,enzymaticbio-analysisenablestheaccuratemeasurementofthevastmajorityofanalytesofinteresttothewinemaker,usingjustonepieceofapparatus,thespectrophotometer(seepreviousissueNo.116foradetailedtechnicalreview).Grapejuiceandwineareamenabletoenzymatictestingasbeingliquidstheyarehomogenous,easytomanipulate,andcangenerallybeanalysedwithoutanysamplepreparation.Megazyme“advanced”winetestkitsgeneralcharacteristicsandvalidation.Charnock,S.J.,McCleary,B.V.,Daverede,C.&Gallant,P.(2006).ReveuedesOenologues,120,1-5.LinktoArticleReadAbstractManyoftheenzymatictestkitsareofficialmethodsofprestigiousorganisationssuchastheAssociationofOfficialAnalyticalChemicals(AOAC)andtheAmericanAssociationofCerealChemists(AACC)inresponsetotheinterestfromoenologists.Megazymedecidedtouseitslonghistoryofenzymaticbio-analysistomakeasignificantcontributiontothewineindustry,bythedevelopmentofarangeofadvancedenzymatictestkits.Thistaskhasnowbeensuccessfullycompletedthroughthestrategicandcomprehensiveprocessofidentifyinglimitationsofexistingenzymaticbio-analysistestkitswheretheyoccurred,andthenusingadvancedtechniques,suchasmolecularBIOLOGy(photo1),torapidlyovercomethem.Noveltestkitshavealsobeendevelopedforanalytesofemerginginteresttotheoenologist,suchasyeastavailablenitrogen(YAN;seepages2-3ofissue117article),orwherepreviouslyenzymesweresimplyeithernotavailable,orweretooexpensivetoemploy,suchasforD-mannitolanalysis.LactosefermentationbyKombucha–aprocesstoobtainnewmilk–basedbeverages.Iličić,M.,Kanurić,K.,Milanović,S.,Lončar,E.,Djurić,M.&Malbaša,R.(2012).RomanianBiotechnologicalLetters,17(1),7013-7021.LinktoArticleReadAbstractThispaperfocusesonfermentationoflactosefromamodelsystem(blacktea)andfromtwotypesofmilk(0.9%w/wand2.2%w/woffat)byapplicationofKombucha.QuantitiesoftheappliedKombuchastarterwere10%v/vand15%v/v.Allfermentationswereperformedat42°C.TheprocesstoachieveadesirablepH=4.5wasslowerinthemodelsystem(16h)thaninmilks(9-10h).Regardingstarterquantity,10%v/vprovedtheoptimal.Regardingtypesofmilk,higherfatcontentguaranteesshorterfermentationandhigheryieldofmetabolites.Utilizationoflactosewasfoundatalevelof≈20%and≈30%inmilkswith0.9%w/wand2.2%w/woffat,respectively.Thiswascorrelatedwithanappearanceofintermediatesand/orproducts.Glucoseunderwentfurthertransformationsalmostentirely,whilegalactoseshowedmuchlowerreactivity.Seventotwelvetimeshighercontentsoflacticacidwerefoundcomparedtoaceticacid.Milk-basedbeveragefromthereducedfatsample,inoculatedwith10%v/vofKombuchastarter,hasthebestphysicalcharacteristics(syneresisandwaterholdingcapacity).Italsodevelopedagoodtexture(especiallycohesivenessandindexofviscosity).Milklactosefermentationwasaprocessthatcouldhavebeenusedforobtainingnewmilk-basedproducts.Sourdough-leavenedbreadimprovespostprandialglucoseandinsulinplasmalevelsinsubjectswithimpairedglucosetolerance.Maioli,M.,Pes,G.M.,Sanna,M.,Cherchi,S.,Dettori,M.,Manca,E.&Farris,G.A.(2008).ActaDiabetologica,45(2),91-96.LinktoArticleReadAbstractSourdoughbreadhasbeenreportedtoimproveglucosemetabolisminhealthysubjects.Inthisstudypostprandialglycaemicandinsulinaemicresponseswereevaluatedinsubjectswithimpairedglucosetolerance(IGT)whohadamealcontainingsourdoughbreadleavenedwithlactobacilli,incomparisontoareferencemealcontainingbreadleavenedwithbakeryeast.SixteenIGTsubjects(agerange52–75,averageBMI29.9±4.2kg/m2)wererandomlygivenamealcontainingsourdoughbread(A)andamealcontainingthereferencebread(B)intwoseparateoccasionsatthebeginningofthestudyandafter7days.Sourdoughbreadwasleavenedfor8husingastartercontainingautochthonousSaccharomycescerevisiaeandseveralbacilliabletoproduceasignificantamountofD-andL-lacticacid,whereasthereferencebreadwasleavenedfor2hwithcommercialbakeryeastcontainingSaccharomycescerevisiae.Plasmaglucoseandinsulinlevelsweremeasuredattime0,30,60,120,and180min.InIGTsubjectssourdoughbreadinducedasignificantlylowerplasmaglucoseresponseat30minutes(p=0.048)andasmallerincrementalareaundercurve(AUC)Δ0–30andΔ0–60min(p=0.020and0.018respectively)incomparisontothebreadleavenedwithbakeryeast.Plasmainsulinresponsetothistypeofbreadshowedlowervaluesat30min(p=0.045)andasmallerAUCΔ0–30min(p=0.018).ThisstudyshowsthatinsubjectswithIGTglycaemicandinsulinaemicresponsesaftertheconsumptionofsourdoughbreadarelowerthanafterthebreadleavenedwithbakeryeast.Thiseffectislikelyduetothelacticacidproducedduringdoughleaveningaswellasthereducedavailabilityofsimplecarbohydrates.Thus,sourdoughbreadmaypotentiallybeofbenefitinsubjectswithimpairedglucosemetabolism.Endocrineandmetaboliceffectsofconsumingfructose-andglucose-sweetenedbeverageswithmealsinobesemenandwomen:Influenceofinsulinresistanceonplasmatriglycerideresponses.Teff,K.L.,Grudziak,J.,Townsend,R.R.,Dunn,T.N.,Grant,R.W.,Adams,S.H.,Keim,N.L.,Cummings,B.P.,Stanhope,K.L.&Havel,P.J.(2009).JournalofClinicalEndocrinology&Metabolism,94(5),1562-1569.LinktoArticleReadAbstractContext:Comparedwithglucose-sweetenedbeverages,consumptionoffructose-sweetenedbeverageswithmealselevatespostprandialplasmatriglyceridesandlowers24-hinsulinandleptinprofilesinnormal-weightwomen.Theeffectsoffructose,comparedwithglucose,ingestiononmetabolicprofilesinobesesubjectshasnotbeenstudied.Objective:Theobjectiveofthestudywastocomparetheeffectsoffructose-andglucose-sweetenedbeveragesconsumedwithmealsonhormonesandmetabolicsubstratesinobesesubjects.DesignandSetting:Thestudyhadawithin-subjectdesignconductedintheclinicalandtranslationalresearchcenter.Participants:Participantsincluded17obesemen(n=9)andwomen(n=8),withabodymassindexgreaterthan30kg/m2.Interventions:Subjectswerestudiedundertwoconditionsinvolvingingestionofmixednutrientmealswitheitherglucose-sweetenedbeveragesorfructose-sweetenedbeverages.Thebeveragesprovided30%oftotalkilocalories.Bloodsampleswerecollectedover24h.MainOutcomeMeasures:Areaunderthecurve(24hAUC)forglucose,lactate,insulin,leptin,ghrelin,uricacid,triglycerides(TGs),andfreefattyacidswasmeasured.Results:Comparedwithglucose-sweetenedbeverages,fructoseconsumptionwasassociatedwithlowerAUCsforinsulin(1052.6±135.1vs.549.2±79.7μU/mlper23h,PPPPConclusions:Inobesesubjects,consumptionoffructose-sweetenedbeverageswithmealswasassociatedwithlessinsulinsecretion,blunteddiurnalleptinprofiles,andincreasedpostprandialTGconcentrationscomparedwithglucoseconsumption.IncreasesofTGswereaugmentedinobesesubjectswithinsulinresistance,suggestingthatfructoseconsumptionmayexacerbateanalreadyadversemetabolicprofilepresentinmanyobesesubjects.Comparedtoglucose-sweetenedbeverages,consumptionoffructose-sweetenedbeveragesincreasespostprandialtriglyceridesinobesesubjects,potentiallyexacerbatingtheknownadversemetabolicprofileassociatedwithobesity.Metabolicandendocrineprofilesinresponsetosystemicinfusionoffructoseandglucoseinrhesusmacaques.Adams,S.H.,Stanhope,K.L.,Grant,R.W.,Cummings,B.P.&Havel,P.J.(2008).Endocrinology,149(6),3002-3008.LinktoArticleReadAbstractDiurnalpatternsofcirculatingleptinconcentrationsareattenuatedafterconsumptionoffructose-sweetenedbeveragescomparedwithglucose-sweetenedbeverages,likelyaresultoflimitedpostprandialglucoseandinsulinexcursionsafterfructose.Differencesinpostprandialexposureofadiposetissuetoperipheralcirculatingfructoseandglucoseorinadipocytemetabolismofthetwosugarsmayalsobeinvolved.Thus,wecomparedplasmaleptinconcentrationsafter6-hivinfusionsofsaline,glucose,orfructose(15mg/kg•min)inovernight-fastedadultrhesusmonkeys(n=9).Despiteincreasesofplasmafructosefromundetectablelevelstoabout2mmduringfructoseinfusion,plasmaleptinconcentrationsdidnotincrease,andthechangeofinsulinwasonlyabout10%ofthatseenduringglucoseinfusion.Duringglucoseinfusion,plasmaleptinwassignificantlyincreasedabovebaselineconcentrationsby240minandincreasedsteadilyuntilthefinal480-mintimepoint(changeinleptin=+2.5±0.9ng/ml,Pvs.saline;percentchangeinleptin=+55±16%;Pvs.saline).Substantialanaerobicmetabolismoffructosewassuggestedbyalargeincreaseofsteady-stateplasmalactate(changeinlactate=1.64±0.15mmfrombaseline),whichwassignificantlygreaterthanthatduringglucose(+0.53±0.14mm)orsaline(−0.51±0.14mm)infusions(Pi.e.limitedpost-fructoseinsulinexcursionsand/orhexose-specificdifferencesinadipocytemetabolism)arelikelytounderliedisparateeffectsoffructoseandglucosetoincreasecirculatingleptinconcentrations.β-FructofuranosidaseandsucrosephosphorylaseofrumenbacteriumPseudobutyrivibrioruminisstrain3.Kasperowicz,A.,Stan-Glasek,K.,Guczynska,W.,Pristas,P.,Javorsky,P.,Vandzurova,A.&Michalowski,T.(2012).WorldJournalofMicrobiologyandBiotechnology,28(3),1271-1279.LinktoArticleReadAbstractThesubjectofthisstudywasthefructanandsucrosedegradingenzymesofbacteriumPseudobutyrivibrioruminisstrain3.Itwasstatedthatcellextractfrombacteriagrowingoninulincontainedβ-fructofuranosidase(EC3.2.1.80and/orEC3.2.1.26)andsucrosephosphorylase(EC2.4.1.7),whilethebacteriamaintainedonsucroseshowedonlyphosphorylase.Partiallypurifiedβ-fructofuranosidasedigestedinulooligosaccharidesandsucrosetofructoseorfructoseandglucose,respectively,butwasunabletodegradethelongchainpolymersofcommercialinulinandTimothygrassfructan.DigestionrateofinulooligosaccharidesfitMichaelis–MentenkineticswithVmax5.64μM/mg/minandKm1.274%,respectively,whilethatofsucrosewaslinear.Partiallypurifiedsucrosephosphorylasedigestedonlysucrose.Thedigestionproductswerefructose,glucose-1Pandfreeglucose.ThereactionwasinagreementwithMichaelis–Mentenkinetics.TheVmaxwere0.599and0.584μM/mg/min,whileKmwere0.190and0.202%forfructosereleaseandglucose-1Pformation,respectively,whenbacteriagrewoninulin.TheVmaxwere,however,1.37and1.023μM/mg/min,whileKmwere0.264and0.156%,ifbacteriaweregrownonsucrose.Thefreeglucosewashardlydetectablefortheenzymeoriginatedfrominulingrownbacteria,butglucoselevelsrangedfrom0.05to0.25μM/mg/min,whencellextractfrombacteriagrownonsucrosewasused.Releaseoffreeglucosewasobservedwhennoinorganicphosphatewaspresentinreactionmixture.ComparativeeffectsoffructoseandglucoseonlipogenicgeneexpressionandintermediarymetabolisminHepG2livercells.Hirahatake,K.M.,Meissen,J.K.,Fiehn,O.&Adams,S.H.(2011).PloSone,6(11),e26583.LinktoArticleReadAbstractConsumptionoflargeamountsoffructoseorsucroseincreaseslipogenesisandcirculatingtriglyceridesinhumans.Althoughtheunderlyingmolecularmechanismsresponsibleforthiseffectarenotcompletelyunderstood,itispossiblethatasreportedforrodents,highfructoseexposureincreasesexpressionofthelipogenicenzymesfattyacidsynthase(FAS)andacetyl-CoAcarboxylase(ACC-1)inhumanliver.Sinceactivationofthehexosaminebiosynthesispathway(HBP)isassociatedwithincreasesintheexpressionofFASandACC-1,itraisesthepossibilitythatHBP-relatedmetaboliteswouldcontributetoanyincreaseinhepaticexpressionoftheseenzymesfollowingfructoseexposure.Thus,wecomparedlipogenicgeneexpressioninhuman-derivedHepG2cellsafterincubationinculturemediumcontainingglucosealoneorglucoseplus5mMfructose,usingtheHBPprecursor10mMglucosamine(GlcN)asapositivecontrol.Cellularmetaboliteprofilingwasconductedtoanalyzedifferencesbetweenglucoseandfructosemetabolism.DespiteevidencefortheactiveuptakeandmetabolismoffructosebyHepG2cells,expressionofFASorACC-1didnotincreaseinthesecellscomparedwiththoseincubatedwithglucosealone.LevelsofUDP-N-acetylglucosamine(UDP-GlcNAc),theend-productoftheHBP,didnotdiffersignificantlybetweentheglucoseandfructoseconditions.Exposureto10mMGlcNfor10minutesto24hoursresultedin8-foldelevatedlevelsofintracellularUDP-GlcNAc(PPPinvivo,itwouldsuggestthathighfructoseconsumptionpromotestriglyceridesynthesisprimarilythroughitsactiontoprovidelipidprecursorcarbonandnotbyactivatinglipogenicgeneexpression.Measurementofglucoseandfructoseinclinicalsamplesusinggaschromatography/massspectrometry.Wahjudi,P.N.,Patterson,M.E.,Lim,S.,Yee,J.K.,Mao,C.S.&Lee,W.N.P.(2010).ClinicalBiochemistry,43(1-2),198-207.LinktoArticleReadAbstractObjective:Theimpactofincreasedfructoseconsumptiononcarbohydratemetabolismisatopicofcurrentinterest,butdeterminationofserumlevelhasbeenhinderedduetolowconcentrationandinterferencefromserumglucose.Wearereportingamethodforthequantificationofglucoseandfructoseinclinicalsamplesusinggaschromatography/massspectrometry(GC/MS).TheaccuracyandprecisionofGC/MSandanenzymaticassaywerecompared.Designandmethods:Massspectrometryfragmentationpatternsofmethyloximeperacetatederivatizedaldoseandketoseweredetermined.Uniquefragmentsforglucoseandfructosewereusedforquantitativeanalysisusingisotopelabeledrecoverystandards.Results:Methyloximeperacetatederivativesofglucoseandfructoseshowedcharacteristiclossofacetate(M-60)orketene(M-42)underchemicalionization(CI).Underelectronimpact(EI)ionization,auniqueC1–C2fragmentofglucosewasformed,whileaC1–C3fragmentwasformedfromketo-hexoses.Theseuniquefragmentswereusedinthequantitativeassayofglucoseandfructoseinclinicalsamples.Inclinicalsamples,theGC/MSassayhasalowerlimitofdetectionthanthatoftheenzymaticassay.Inplasmasamplesfrompatientsevaluatedfordiabetestheaverageserumglucoseandfructosewere6.19±2.72mMand46±25.22μM.Fructoseconcentrationsinmanyofthesesampleswerebelowthelimitofdetectionoftheenzymaticmethod.Conclusion:DerivatizationofaldoseandketosemonosaccharidestotheirrespectiveO-methyloximeacetatesforGC/MSanalysisisafacilemethodfordeterminationofserum/plasmaglucoseandfructosesamples.PhysiologicalstudiesofLeuconostocmesenteroidesstrainNRRLB-1149duringcultivationonglucoseandfructosemedia.Bivolarski,V.,Vasileva,T.,Shukla,R.,Goyal,A.&Iliev,I.(2012).JournalofBioScience&Biotechnology,1(3),235-240.LinktoArticleReadAbstractGlycosyltransferasesareextracellularandcell-associatedsucraseenzymesproducedmainlybylacticacidbacteriaLeuconostocmesenteroides,oralStreptococcusspeciesandalsoLactobacillusspecies.Accordingtothesynthesizedpolymer(glucanorfructan)inthepresenceofsucrose,theseenzymesaredividedintotwogroups:glucosyltransferases(GTFs)andfructosyltransferases(FTFs).OnlyStreptococcus,LactobacillusandLeuconostocstrainsareknownasproducersofbothGTFsandFTFs.TheenzymesfromLactobacillusandLeuconostocspp.areimplicatedinthesynthesisofpolymersandoligosaccharides(OS)importantforhumanhealthbecauseoftheirprebioticpropertiesandimmunomodulatingactivity.Inthepresentwork,westudiedtheproductionofextracellularandcell-associatedglycosyltransferasesbyLeuconostocmesenteroidesstrainNRRLB-1149duringitsgrowthonmediacontainingglucoseorfructoseasamaincarbonsource.Theenzymeactivities,pHandbiomassformationweremeasuredandcomparedduringthecultivation.Wehaveshownthatglucoseandfructosehavenotanequalroleforenzymeproduction.Thehighestextracellularactivitywasdetectedatthe4thhourduringthecultivationofthestraininmediumwithfructose-5.45U/mg.Whenthestrainwascultivatedinmediumwithglucose,themaximumofextracellularenzymeactivitywasdetectedatthe5thhourofthecultivationbutthemeasuredactivitywasabout9timeslowercomparedtothese,obtainedaftercultivationinfructosemedium.Thestudiedstrainproducedmainlyextracellularglycosyltransferasesinglucoseorfructosemedium,whichwere92.4%and97.1%ofthetotalenzymeactivity,respectively.Inordertocharacterizetheproducedenzymes,cell-associatedandextracellularenzymesweredeterminedusingSDS-PAGEandinsituPeriodicAcidSchiff"sstainingafterincubationwith10%sucrose.Whentheinvestigatedstrainwasgrowninmediawithsucrose,glucoseorfructose,severaltypesofglycosyltransferasesweredetected-dextransucrasewithmolecularweight180kDaandtwofructosyltransferases,correspondingto120kDaand86kDamolecularweights.Aldosereductaseisimplicatedinhighglucose‐inducedoxidativestressinmouseembryonicneuralstemcells.Fu,J.,Tay,S.S.W.,Ling,E.A.&Dheen,S.T.(2007).JournalofNeuRochemistry,103(4),1654-1665.LinktoArticleReadAbstractOxidativestresscausedbyhyperglycemiaisoneofthekeyfactorsresponsibleformaternaldiabetes-inducedcongenitalmalformations,includingneuraltubedefectsinembryos.However,mechanismsbywhichmaternaldiabetesinducesoxidativestressduringneurulationarenotclear.Thepresentstudywasaimedtoinvestigatewhetherhighglucoseinducesoxidativestressinneuralstemcells(NSCs),whichcomposetheneuraltubeduringdevelopment.WealsoinvestigatedthemechanismbywhichhighglucosedisturbsthegrowthandsurvivalofNSCsinvitro.NSCswereexposedtophysiologicalD-glucoseconcentration(PG,5mmol/L),PGwithL-glucose(25mmol/L),orhighD-glucoseconcentration(HG,30or45mmol/l).HGinducedreactiveoxygenspeciesproductionandmRNAexpressionofaldosereductase(AR),whichcatalyzestheglucosereductionthroughpolyolpathway,inNSCs.Expressionofglucosetransporter1(Glut1)mRNAandproteinwhichregulatesglucoseuptakeinNSCswasincreasedatearlystage(24h)andbecamedown-regulatedatlatestage(72h)ofexposuretoHG.InhibitionofARbyfidarestat,anARinhibitor,decreasedtheoxidativestress,restoredthecellviabilityandproliferation,andreducedapoptoticcelldeathinNSCsexposedtoHG.Moreover,inhibitionofARattenuatedthedown-regulationofGlut1expressioninNSCsexposedtoHGfor72h.TheseresultssuggestthattheactivationofpolyolpathwayplaysaroleintheinductionofoxidativestresswhichaltersGlut1expressionandcellcycleinNSCsexposedtoHG,therebyresultinginabnormalpatterningoftheneuraltubeinembryosofdiabeticpregnancy.Immobilisedyeastgrapemustdeacidificationinarecyclefixedbedreactor.Portugal,I.,Ribeiro,S.C.,Xavier,A.M.R.B.,Centeno,F.&Strehaiano,P.(2011).InternationalJournalofFoodScience&Technology,46(2),284-289.LinktoArticleReadAbstractMaloalcoholicfermentation(MAF)ofgrapemustbySchizosaccharomycespombeimmobilisedincalcium-alginatedouble-layerbeads(ProMalic®)wasstudiedinErlenmeyerflasksandinatotalrecyclefixed-bedreactoroperatinginbatchmode.Thereactionispseudo-firstorderwithrespecttoL-malicacidandundersimilarconditionsdeacidificationisfasterintherecyclereactor.ThiswasattributedtomasstransferlimitationswhichwereconfirmedintherecyclereactorbystudyingtheinfluenceofyeastloadontherateofMAF.Masstransferlimitationsarealsoresponsiblefortheloweractivationenergyoffermentationwiththeimmobilisedyeast(67±9kJmol-1)incomparisonwiththefreecells(126±19kJmol-1).AlcoholicfermentationandMAFwereperformedsimultaneously,bothintherecyclereactorandintheindustrialtrials,confirmingtheefficacyofimmobilisedS.pombetoreducegrapemustaciditywithoutinterferingwiththemainfermentation.Altogether,thepresentresultsareusefulforthescale-upofarecyclereactortoprocesslargevolumesofgrapemust.UV-methodforthedeterminationofD-FructoseandD-Glucoseinfoodstuffs,beveragesandothermaterialsPrinciple:            (hexokinase)(1)D-Glucose+ATP→G-6-P+ADP             (hexokinase)(2)D-Fructose+ATP→F-6-P+ADP     (glucose-6-phosphatedehydrogenase)(3)G-6-P+NADP+→gluconate-6-phosphate+NADPH+H+  (phosphoglucoseisomerase)(4)F-6-P       ↔       G-6-PKitsize:  * 110assays(manual)/1100(microplate)                                         /1100(auto-analyser)* Thenumberofmanualtestsperkitcanbedoubledifallvolumesarehalved. ThiscanbereadilyaccommodatedusingtheMegaQuantTM WaveSpectrophotometer(D-MQWAVE).Method:                          Spectrophotometricat340nmReactiontime:                 ~13minDetectionlimit:                0.66mg/LApplicationexamples:Wine,beer,fruitjuices,softdrinks,milk,jam,honey,dieteticfoods,bread,bakeryproducts,candies,desserts,confectionery,ice-cream,fruitandvegetables,condiments,tobacco,cosmetics,pharmaceuticals,paperandothermaterials(e.g.biologicalcultures,samples,etc.)Methodrecognition:   MethodsbasedonthisprinciplehavebeenacceptedbyAOAC,EN,NEN,NF,DIN,GOST,OIV,IFU,AIJN,MEBAKandIOCCCAdvantagesPVPincorporatedtopreventtannininhibition ValidatedbytheUniversityofWine,SuzelaRousse,France Verycompetitiveprice(costpertest) Allreagentsstablefor>2yearsafterpreparation(manualanalysisapplications) Rapidreactionateither25or37°C Mega-Calc™softwaretoolisavailablefromourwebsiteforhassle-freerawdataprocessing Standardincluded Extendedcofactorsstability Suitableformanual,microplateandauto-analyserformats

Megazyme品牌产品简介

来源:作者:人气:2149发表时间:2016-05-19 10:59:00【  
Megazyme检测试剂盒 - 用于食品、饲料、乳制品、葡萄酒分析
Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
Megazyme检测试剂盒产品◆ 检测试剂盒
◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号 中文品名 用途
K-ACETAF 乙酸[AF法]检测试剂盒 酶法定量分析乙酸最广泛使用的方法
K-ACHDF 可吸收糖/膳食纤维检测试剂盒 酒精沉淀法测定膳食纤维
K-AMIAR 氨快速检测试剂盒 用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。
K-AMYL 直链淀粉/支链淀粉检测试剂盒 谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测
K-ARAB 阿拉伯聚糖检测试剂盒 果汁浓缩液中阿拉伯聚糖的检测
K-ASNAM L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒 用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析
K-ASPTM 阿斯巴甜检测试剂盒 专业用于测定饮料和食品中阿斯巴甜含量,操作简单
K-BETA3 β-淀粉酶检测试剂盒 适用于麦芽粉中β-淀粉酶的测定
K-BGLU 混合键β-葡聚糖检测试剂盒 测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量
K-CERA α-淀粉酶检测试剂盒 谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定
K-CITR 柠檬酸检测试剂盒 快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量
K-DLATE 乳酸快速检测试剂盒 快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量
K-EBHLG 酵母β-葡聚糖酶检测试剂盒 用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖
K-ETSULPH 总亚硫酸检测试剂盒 测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法
K-FRGLMQ D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒 适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。
K-FRUC 果聚糖检测试剂盒 含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。
K-FRUGL D-果糖/D-葡萄糖检测试剂盒 对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。
K-GALM 半乳甘露聚糖检测试剂盒 食品和植物产品中半乳甘露聚糖的含量检测
K-GLUC D-葡萄糖[GOPOD]检测试剂盒 谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUHK D-葡萄糖[HK]检测试剂盒 植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUM 葡甘聚糖检测试剂盒 植物和食品中葡甘聚糖的含量测定。
K-INTDF 总膳食纤维检测试剂盒 总膳食纤维特定检测和分析
K-LACGAR 乳糖/D-半乳糖快速检测试剂盒 用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖
K-LACSU 乳糖/蔗糖/D-葡萄糖检测试剂盒 混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定
K-LACTUL 乳果糖检测试剂盒 特异性、快速和灵敏测量奶基样品中乳果糖含量
K-MANGL D-甘露糖/D-果糖/D-葡萄糖检测试剂盒 适合测定植物产品和多糖酸性水解产物中D-甘露糖含量
K-MASUG 麦芽糖/蔗糖/D-葡萄糖检测试剂盒 在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测
K-PECID 胶质识别检测试剂盒 食品配料中果胶的鉴别
K-PHYT 植酸(总磷)检测试剂盒 食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析
K-PYRUV 丙酮酸检测试剂盒 在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析
K-RAFGA 棉子糖/D-半乳糖检测试剂盒 快速测量植物材料和食品中棉子糖和半乳糖含量
K-RAFGL 棉子糖/蔗糖/D-半乳糖检测试剂盒 分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定
K-SDAM 淀粉损伤检测试剂盒 谷物面粉中淀粉损伤的检测和分析
K-SUCGL 蔗糖/D-葡萄糖检测试剂盒 饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析
K-SUFRG 蔗糖/D-果糖/D-葡萄糖检测试剂盒 适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定
K-TDFR 总膳食纤维检测试剂盒 总膳食纤维检测
K-TREH 海藻糖检测试剂盒 快速、可靠地检测食品、饮料和其它物料中海藻糖含量
K-URAMR 尿素/氨快速检测试剂盒 适用于水、饮料、乳制品和食品中尿素和氨的快速测定
K-URONIC D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒 简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸)
K-XYLOSE D-木糖检测试剂盒 简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量
K-YBGL Beta葡聚糖[酵母和蘑菇]检测试剂盒 检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量
客服在线
service-logo
已有 人查看该问题
tel
全国免费服务热线
4000-520-616
微信公众号
关注我们
手机扫码,关注动态