

提醒:代购产品,无质量问题不接受退换货,下单前请仔细核对信息。下单后请及时联系客服
核对商品价格,订单生效后再付款。
产品说明
TheD-GluconicAcid/D-Glucono-δ-lactonetestkitissuitableforthespecificmeasurementandanalysisofD-gluconicacid/D-gluconolactoneinfoodsandbeverages.ExtendedcofactorsstABIlity.Dissolvedcofactorsstablefor>1yearat4oC.Suitableformanual,auto-analyserandmicroplateformats.Grapeandwineanalysis:Oenologiststoexploitadvancedtestkits.Charnock,S.C.&McCleary,B.V.(2005).RevuedesEnology,117,1-5.LinktoArticleReadAbstractItiswithoutdoubtthattestingplaysapivotalrolethroughoutthewholeofthevinificationprocess.ToproducethebestpossIBLequalitywineandtominimiseprocessproblemssuchas“stuck”fermentationortroublesomeinfections,itisnowrecognisedthatifpossibletestingshouldbeginpriortoharvestingofthegrapesandcontinuethroughtobottling.TrADItionalmethodsofwineanalysisareoftenexpensive,timeconsuming,requireeitherelaborateequipmentorspecialistexpertiseandfrequentlylackaccuracy.However,enzymaticbio-analysisenablestheaccuratemeasurementofthevastmajorityofanalytesofinteresttothewinemaker,usingjustonepieceofapparatus,thespectrophotometer(seepreviousissueNo.116foradetailedtechnicalreview).Grapejuiceandwineareamenabletoenzymatictestingasbeingliquidstheyarehomogenous,easytomanipulate,andcangenerallybeanalysedwithoutanysamplepreparation.Megazyme“advanced”winetestkitsgeneralcharacteristicsandvalidation.Charnock,S.J.,McCleary,B.V.,Daverede,C.&Gallant,P.(2006).ReveuedesOenologues,120,1-5.LinktoArticleReadAbstractManyoftheenzymatictestkitsareofficialmethodsofprestigiousorganisationssuchastheAssociationofOfficialAnalyticalChemicals(AOAC)andtheAmericanAssociationofCerealChemists(AACC)inresponsetotheinterestfromoenologists.Megazymedecidedtouseitslonghistoryofenzymaticbio-analysistomakeasignificantcontributiontothewineindustry,bythedevelopmentofarangeofadvancedenzymatictestkits.Thistaskhasnowbeensuccessfullycompletedthroughthestrategicandcomprehensiveprocessofidentifyinglimitationsofexistingenzymaticbio-analysistestkitswheretheyoccurred,andthenusingadvancedtechniques,suchasmolecularBIOLOGy(photo1),torapidlyovercomethem.Noveltestkitshavealsobeendevelopedforanalytesofemerginginteresttotheoenologist,suchasyeastavailablenitrogen(YAN;seepages2-3ofissue117article),orwherepreviouslyenzymesweresimplyeithernotavailable,orweretooexpensivetoemploy,suchasforD-mannitolanalysis.InteractionofNectarin4withafungalproteintriggersamicrobialsurveillanceanddefensemechanisminnectar.Harper,A.D.,Stalnaker,S.H.,Wells,L.,Darvill,A.,Thornburg,R.&York,W.S.(2010).Phytochemistry,71(17-18),1963-1969.LinktoArticleReadAbstractUnderstandingthebiochemicalmechanismsbywhichplantsrespondtomicrobialinfectionisafundamentalgoalofplantscience.Extracellulardermalglycoproteins(EDGPs)arewidelyexpressedinplanttissuesandhavebeenimplicatedinplantdefenseresponses.AlthoughEDGPsareknowntointeractwithfungalproteins,thedownstreameffectsoftheseinteractionsarepoorlyunderstood.Togaininsightintothesephenomena,weusedtobaccofloralnectarasamodelsystemtoidentifyamechanismbywhichtheEDGPknownasNectarinIV(NEC4)functionsaspathogensurveillancemolecule.OurdatademonstratesthattheinteractionofNEC4withafungalendoglucanase(XEG)promotesthecatalyticactivityofNectarinV(NEC5),whichcatalyzestheconversionofglucoseandmolecularoxygentogluconicacidandH2O2.SignificantlyenhancedNEC5activitywasobservedwhenXEGwasaddedtonectarornectarinsolutionsthatcontainNEC4.ThisresponsewasalsoobservedwhenthepurifiedNEC4:XEGcomplexwasaddedtoNEC4-depletednectarinsolutions,whichdidnotrespondtoXEGalone.TheseresultsindicatethatformationoftheNEC4:XEGcomplexisakeystepleadingtoinductionofNEC5activityinfloralnectar,resultinginanincreaseinconcentrationsofreactiveoxygenspecies(ROS),whichareknowntoinhibitmicrobialgrowthdirectlyandactivatesignaltransductionpathwaysthatinduceinnateimmunityresponsesintheplant.TheLysRtranscriptionfactor,HexS,isrequiredforglucoseinhibitionofprodigiosinproductionbySerratiamarcescens.Stella,N.A.,Fender,J.E.,Lahr,R.M.,Kalivoda,E.J.&Shanks,R.M.(2012).AdvancesinMicrobiology,2(4).LinktoArticleReadAbstractGenerationofmanyusefulmicrobe-derivedsecondarymetabolites,includingtheredpigmentprodigiosinofthebacteriumSerratiamarcescens,isinhibitedbyglucose.Inapreviousreport,ageneticapproachwasusedtodeterminethatglucosedehydrogenaseactivity(GDH)isrequiredforinhibitingprodigiosinproductionandtranscriptionoftheprodigiosinbiosyntheticoperon(pigA-N).However,thetranscriptionfactor(s)thatregulatethisprocesswerenotcharacterized.HerewetestedthehypothesisthatHexS,aLysR-familytranscriptionfactorsimilartoLrhAofEscherichiacoli,isrequiredforinhibitionofprodigiosinbygrowthinglucose.WeobservedthatmutationofthehexSgeneinS.marcescensallowedtheprecociousproductionofprodigiosininglucose-richmediumconditionsthatcompletelyinhibitedprodigiosinproductionbythewildtype.Unlikepreviouslydescribedmutantsabletogenerateprodigiosininglucose-richmedium,hexSmutantsexhibitedGDHactivityandmediumacidificationsimilartothewildtype.GlucoseinhibittionofpigAexpressionwasshowntobedependentuponHexS,suggestingthatHexSisakeytranscriptionfactorinsecondarymetaboliteregulationinresponsetomediumpH.Thesedatagiveinsightintotheprodigiosinregulatorypathwayandcouldbeusedtoenhancetheproductionofsecondarymetabolites.ModelingofContinuousGluconicAcidProductionbyFermentation.Fatmawati,A.&Agustriyanto,R.(2010).ScienceJournal.1(1),82-89.LinktoArticleReadAbstractThebatchfermentationkineticofgluconicacidproductionhasbeenstudied.ThecontinuousfermentationprocessofglucosebyAspergillusnigertoproducegluconicacidundertheinfluenceofinletsubstrateconcentrationandhydraulicretentiontimehasalsobeeninvestigated.Thefermentationwasmodeledtobecarriedoutinacontinuousstirredtankreactor.Theresultsshowedthatatthestudiedinletglucoseconcentrationof150,200,and250g/l,thehydraulicretentiontimeresultedintheincreasingamountofcellandgluconicacidconcentrationbutdecreasingglucoseconcentrationattheoutletstreamofthereactor.Themodelresultsalsosuggestedthatthepossiblerangeofhydraulicretentiontimefortheinletsubstrateconcentrationof150,200,and250g/lwere3-13,8-12,and7-11h,respectively.Thereforetherecommendedvaluesofhydraulicretentiontimewere13,12and11hfortheinletsubstrateconcentrationof150,200,and250g/l,respectively.Geneticdiversityofphosphate-solubilizingpeanut(ArachishypogaeaL.)associatedbacteriaandmechanismsinvolvedinthisability.Anzuay,M.S.,Frola,O.,Angelini,J.G.,Ludueña,L.M.,Fabra,A.&Taurian,T.(2013).Symbiosis,60(3),143-154.LinktoArticleReadAbstractInthisstudy,attemptsweremadetoanalyzemechanismsinvolvedinthebacterialphosphate-solubilizingabilityofpeanutisolates.Bacteriaweretaxonomicallyidentifiedbyanalysisof16SrDNAsequence.LevelsofsolublePreleasedbytheisolatesinunbufferedorbufferedwithTris–HClorMESNBRIP-BPBmediumaswellastheproductionofD-gluconicacidweredeterminedintheirculture.PresenceoftwoofthegenesencodingthecofactorPQQofGDHenzymewasanalyzedinthegenomeofthisbacterialcollection.16SrDNAsequenceanalysisindicatedthatisolatesbelongtogeneraSerratia,Enterobacter,Pantoea,Acinetobacter,BacillusandEnterococcus.Allbacteriashowedabilitytosolubilizetricalciumphosphateeitherinunbufferedorbufferedmedium.Nevertheless,additionofbuffersolutionsreducedlevelsofPiliberatedbytheisolates.AlthoughalmostallisolatesproduceddetectableamountsofD-gluconicacid,nocorrelationwithlevelsofPsolublereleasedwereobserved.ThepresenceofpqqEandpqqCgeneswasdetectedonlyinGramnegativebacteria.Itwasconcludedfromthisstudythatthemechanisminvolvedinphosphatesolubilizationisorganicacidsproductionand,presenceofpqqgenesinallGramnegativebacteriaanalyzedencouragestoconfirmtheirroleinbacterialphosphatesolubilizingabilityaswelltoidentifygenesinvolvedinthisPGPtraitinGrampositivebacteria.Aerobicdeconstructionofcellulosicbiomassbyaninsect-associatedStreptomyces.Takasuka,T.E.,Book,A.J.,Lewin,G.R.,Currie,C.R.&Fox,B.G.(2013).ScientificReports,3.LinktoArticleReadAbstractStreptomycesarebestknownforproducingantimicrobialsecondarymetabolites,buttheyarealsorecognizedfortheircontributionstobiomassutilization.Despitetheirimportancetocarboncyclinginterrestrialecosystems,ourunderstandingofthecellulolyticabilityofStreptomycesiscurrentlylimitedtoafewsoil-isolates.Here,wedemonstratethebiomass-deconstructingcapabilityofStreptomycessp.SirexAA-E(ActE),anaerobicbacteriumassociatedwiththeinvasivepine-boringwoodwaspSirexnoctilio.Whengrownonplantbiomass,ActEsecretesasuiteofenzymesincludingendo-andexo-cellulases,CBM33polysaccharide-monooxygenases,andhemicellulases.Genome-widetranscriptomicandproteomicanalyses,andbiochemicalassayshaverevealedthekeyenzymesusedtodeconstructcrystallinecellulose,otherpurepolysaccharides,andbiomass.Themixtureofenzymesobtainedfromgrowthonbiomasshasbiomass-degradingactivitycomparabletoacellulolyticenzymecocktailfromthefungusTrichodermareesei,andthusprovidesacompellingexampleofhighcellulolyticcapacityinanaerobicbacterium.Serratiamarcescensquinoproteinglucosedehydrogenaseactivitymediatesmediumacidificationandinhibitionofprodigiosinproductionbyglucose.Fender,J.E.,Bender,C.M.,Stella,N.A.,Lahr,R.M.,Kalivoda,E.J.&Shanks,R.M.(2012).AppliedandEnvironmentalMicrobiology,78(17),6225-6235.LinktoArticleReadAbstractSerratiamarcescensisamodelorganismforthestudyofsecondarymetabolites.Thebiologicallyactivepigmentprodigiosin(2-methyl-3-pentyl-6-methoxyprodiginine),likemanyothersecondarymetabolites,isinhibitedbygrowthinglucose-richmedium.WhereaspreviousstudiesindicatedthatthisinhibitoryeffectwaspHdependentanddidnotrequirecyclicAMP(cAMP),thereisnoinformationonthegenesinvolvedinmediatingthisphenomenon.Hereweusedtransposonmutagenesistoidentifygenesinvolvedintheinhibitionofprodigiosinbyglucose.Multiplegeneticlociinvolvedinquinoproteinglucosedehydrogenase(GDH)activitywerefoundtoberequiredforglucoseinhibitionofprodigiosinproduction,includingpyrroloquinolinequinoneandubiquinonebiosyntheticgenes.UponassessingwhethertheenzymaticproductsofGDHactivitywereinvolvedintheinhibitoryeffect,weobservedthatD-glucono-1,5-lactoneandD-gluconicacid,butnotD-gluconate,wereabletoinhibitprodigiosinproduction.ThesedatasupportamodelinwhichtheoxidationofD-glucosebyquinoproteinGDHinitiatesareductioninpHthatinhibitsprodigiosinproductionthroughtranscriptionalcontroloftheprodigiosinbiosyntheticoperon,providingnewinsightintothegeneticpathwaysthatcontrolprodigiosinproduction.Strainsgeneratedinthisreportmaybeusefulinlarge-scaleproductionofsecondarymetabolites.Applyingsystemsbiologytoolstostudyn‐butanoldegradationinPseudomonasputidaKT2440.Vallon,T.,Simon,O.,Rendgen‐Heugle,B.,Frana,S.,Mückschel,B.,Broicher,A.,Siemann-Herzberg,M.,Pfannenstiel,J.,Hauer,B.,Huber,A.,Breuer,M.&Breuer,M.(2015).EngineeringinLifeSciences,15(8),760-771.LinktoArticleReadAbstractTosmoothentheprocessofn-butanolformationinPseudomonasputidaKT2440,detailedknowledgeoftheimpactofthisorganicsolventoncellphysiologyandregulationisofoutmostimportance.Here,weconductedadetailedsystemsbiologystudytoelucidatecellularresponsesatthemetabolic,proteomic,andtranscriptionallevel. PseudomonasputidaKT2440wascultivatedinmultiplechemostatfermentationsusingn-butanoleitherassolecarbonsourceortogetherwithglucose.PseudomonasputidaKT2440revealedmaximumgrowthrates(µ)of0.3 h-1withn-butanolassolecarbonsourceandof0.4 h-1usingequalC-molaramountsofglucoseandn-butanol.WhileC-molespecificsubstrateconsumptionandbiomass/substrateyieldsappearedequalatthesegrowthconditions,thecellularphysiologywasfoundtobesubstantiallydifferent:adenylateenergychargelevelsof0.85werefoundwhenn-butanolservedassolecarbonsource(similartoglucoseassolecarbonsource),butwerereducedto0.4when n-butanolwascoconsumedatstablegrowthconditions.FurThermore,characteristicmaintenanceparameterschangedwithincreasing n-butanolconsumption.13Cfluxanalysisrevealedthatcentralmetabolismwassplitintoaglucose-fueledEntner–Doudoroff/pentose-phosphatepathwayandann-butanol-fueledtricarboxylicacidcyclewhenbothsubstrateswerecoconsumed.Withthehelpoftranscriptomeandproteomeanalysis,thedegradationpathwayofn-butanolcouldbeunraveled,thusrepresentinganimportantbasisforrenderingP.putidaKT2440fromann-butanolconsumertoaproducerinfuturemetabolicengineeringstudies.RapidAssessmentofGrayMold(Botrytiscinerea)InfectioninGrapesUsingBiosensorsSystem.Cinquanta,L.,Albanese,D.,DeCurtis,F.,Malvano,F.,Crescitelli,A.&DiMatteo,M.(2015).AmericanJournalofEnologyandViticulture,66(4).LinktoArticleReadAbstractBotrytiscinereaisresponsibleforthegraymolddisease,whichcausesconsiderableeconomiclossesforwinemakers.Itsevaluationinwinegrapesiscommonlyperformedthroughvisualestimation,whichwasdemonstratedtobepronetoassessorbias.RapidandsimpleenzymaticcarbonscreenprintedamperometricbiosensorswerehereusedtoevaluategluconicacidandglycerolcontentonwinegrapesatdifferentB.cinereainfectiondegrees.Thelowerconcentrationsmeasurablebyscreen-printedamperometricbiosensorswere3mg/Lforgluconicacid(correspondingtoaninfectiondegreelowerthan1%)and35mg/Lforglycerol;theresponsetimeswithaflowrateof0.5mL/minwereinarangeof0.5to2mininthelinearranges.Thisstudydemonstratestheeffectivenessofthebiosensorsforrapidanalysisofgluconicacidandglycerolingrapes,confirmingtheirhighcorrelationwithB.cinereadegreeofinfection(R2 =0.98).Thus,thebiosensordevelopedtomeasuregluconicacidingrapes(ormust),wasmoreprecise,andgaveafasterresponsethanmethodsthatcurrentlyexistallowingthepercentageofinfectionofgrapeberriesbyB.cinereatobeevaluated.Revalorizationofstrawberrysurplusesbybio-transformingitsglucosecontentintogluconicacid.Cañete-Rodríguez,A.M.,Santos-Dueñas,I.M.,Jiménez-Hornero,J.E.,Torija-Martínez,M.J.,Mas,A.&García-García,I.(2016).FoodandBioproductsProcessing,99,188-196.LinktoArticleReadAbstractModernsocietiesproducemassivesurplusesoffood,by-productsandwastesthatincreasetheinterestfortheirrevalorization.ThisworkexaminestheuseofacultureofGluconobacterjaponicusCECT8443,withoutpHcontrol,toconvertselectivelytheglucosecontentofindustriallypasteurizedstrawberrypuréeintogluconicacidforthedevelopmentofnewbeverages.However,dependingontheinitialconcentrationofglucose,themicroorganismcouldtransformtheacidformedintoothercompounds;forthisreason,inthisworktheeffectofinitialsugarconcentrationonthepreservationoftheacidwasinvestigated.Theresultsshowthatthegluconicacidformedinstrawberrypuréecontainingnoaddedsugarsstartedtodisappearafterglucosedepletion,buttheacidconcentrationremainedconstantifsugar-enrichedpuréewasused.Theuseofthisindustrialsubstrateresultedinthepresenceofyeastsandhenceinsomefructoseuptake;however,thefructoseconsumptionwasnegligibleuntilafter20–30 h.Theuseoffoodby-productsisanexcellentopportunitynotonlytorecovervaluablecompoundsbutforthedevelopmentofnewchemicalandbiotechnologicalapproachesfortheirrevalorization.Thisstrategyshouldimproveregionaleconomiesandcontributetoasustainablemanagementoftheseunderexploitedresources.AnapproachforestimatingthemaximumspecificgrowthrateofGluconobacterjaponicusinstrawberrypuréewithoutcellconcentrationdata.Cañete-Rodríguez,A.M.,Santos-Dueñas,I.M.,Jiménez-Hornero,J.E.,Torija-Martínez,M.J.,Mas,A.&García-García,I.(2016).BiochemicalEngineeringJournal,105,314-320.LinktoArticleReadAbstractTheestimationofthemaximumspecificgrowthrate(µmax)fornon-readilyculturablebacteria,growingoncomplexmediacontainingsUSPendedsolids,isadifficulttaskconsideringtheimportantproblemsinobtainingreliablemeasuresofcellconcentration.AnexampleofthissituationcanbeacultureofGluconobacterjaponicusgrowinginstrawberrypuréeforproducinggluconicacid.BasedonthedependencybetweenenergyrequirementsofthegenusGluconobacterandsubstrateuptakeaswellasitsconstantrelationshipbetweengluconicacidproductionandtotalsubstrateuptake,thetotalsubstrateconcentrationprofileduringtheexponentialgrowthphasecouldbeusedforestimatingµmaxwithoutcellconcentrationmeasures.Inthiscase,thehighselectivityofthestrainforglucoseincomparisontofructoseresultedinnofructoseconsumptionduringthebatch;so,justusingtheglucoseconcentrationsdataduringtheexponentialphaseallowustoobtainanestimationofµmax.Additionally,aroughestimationoftheapparentandstoichiometricyieldsofcellonglucoseisalsopossible.UV-methodforthedeterminationofD-GluconicAcidandD-Glucono-δ-lactoneinfoodstuffs,beveragesandothermaterialsPrinciple: (gluconatekinase)(1)D-Gluconate+ATP→gluconate-6-phosphate+ADP (gluconate-6-phosphatedehydrogenase)(2)Gluconate-6-phosphate+NADP+→ribulose-5-phosphate+ NADPH+CO2+H+ (pH11)(3)D-Glucono-δ-lactone+H2O→D-gluconateKitsize: * 60assays(manual)/600(microplate) /600(auto-analyser)* Thenumberofmanualtestsperkitcanbedoubledifallvolumesarehalved. ThiscanbereadilyaccommodatedusingtheMegaQuantTM WaveSpectrophotometer(D-MQWAVE).Method: Spectrophotometricat340nmReactiontime: ~6minDetectionlimit: 0.792mg/LApplicationexamples:Wine,meat,processedmeat(e.g.additives),fruitjuice,dairyproducts,pharmaceuticals,paperandothermaterials(e.g.biologicalcultures,samples,etc.)Methodrecognition: MethodsbasedonthisprinciplehavebeenacceptedbyISO,DINandGOSTAdvantagesAllreagentsstablefor>2yearsafterpreparation Verycompetitiveprice(costpertest) Veryrapidreaction Mega-Calc™softwaretoolisavailablefromourwebsiteforhassle-freerawdataprocessing Standardincluded Extendedcofactorsstability Suitableformanual,microplateandauto-analyserformats
Megazyme品牌产品简介

Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
Megazyme的主要产品线包括:

◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号 | 中文品名 | 用途 |
K-ACETAF | 乙酸[AF法]检测试剂盒 | 酶法定量分析乙酸最广泛使用的方法 |
K-ACHDF | 可吸收糖/膳食纤维检测试剂盒 | 酒精沉淀法测定膳食纤维 |
K-AMIAR | 氨快速检测试剂盒 | 用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。 |
K-AMYL | 直链淀粉/支链淀粉检测试剂盒 | 谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测 |
K-ARAB | 阿拉伯聚糖检测试剂盒 | 果汁浓缩液中阿拉伯聚糖的检测 |
K-ASNAM | L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒 | 用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析 |
K-ASPTM | 阿斯巴甜检测试剂盒 | 专业用于测定饮料和食品中阿斯巴甜含量,操作简单 |
K-BETA3 | β-淀粉酶检测试剂盒 | 适用于麦芽粉中β-淀粉酶的测定 |
K-BGLU | 混合键β-葡聚糖检测试剂盒 | 测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量 |
K-CERA | α-淀粉酶检测试剂盒 | 谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定 |
K-CITR | 柠檬酸检测试剂盒 | 快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量 |
K-DLATE | 乳酸快速检测试剂盒 | 快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量 |
K-EBHLG | 酵母β-葡聚糖酶检测试剂盒 | 用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖 |
K-ETSULPH | 总亚硫酸检测试剂盒 | 测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法 |
K-FRGLMQ | D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒 | 适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。 |
K-FRUC | 果聚糖检测试剂盒 | 含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。 |
K-FRUGL | D-果糖/D-葡萄糖检测试剂盒 | 对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。 |
K-GALM | 半乳甘露聚糖检测试剂盒 | 食品和植物产品中半乳甘露聚糖的含量检测 |
K-GLUC | D-葡萄糖[GOPOD]检测试剂盒 | 谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。 |
K-GLUHK | D-葡萄糖[HK]检测试剂盒 | 植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。 |
K-GLUM | 葡甘聚糖检测试剂盒 | 植物和食品中葡甘聚糖的含量测定。 |
K-INTDF | 总膳食纤维检测试剂盒 | 总膳食纤维特定检测和分析 |
K-LACGAR | 乳糖/D-半乳糖快速检测试剂盒 | 用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖 |
K-LACSU | 乳糖/蔗糖/D-葡萄糖检测试剂盒 | 混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定 |
K-LACTUL | 乳果糖检测试剂盒 | 特异性、快速和灵敏测量奶基样品中乳果糖含量 |
K-MANGL | D-甘露糖/D-果糖/D-葡萄糖检测试剂盒 | 适合测定植物产品和多糖酸性水解产物中D-甘露糖含量 |
K-MASUG | 麦芽糖/蔗糖/D-葡萄糖检测试剂盒 | 在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测 |
K-PECID | 胶质识别检测试剂盒 | 食品配料中果胶的鉴别 |
K-PHYT | 植酸(总磷)检测试剂盒 | 食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析 |
K-PYRUV | 丙酮酸检测试剂盒 | 在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析 |
K-RAFGA | 棉子糖/D-半乳糖检测试剂盒 | 快速测量植物材料和食品中棉子糖和半乳糖含量 |
K-RAFGL | 棉子糖/蔗糖/D-半乳糖检测试剂盒 | 分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定 |
K-SDAM | 淀粉损伤检测试剂盒 | 谷物面粉中淀粉损伤的检测和分析 |
K-SUCGL | 蔗糖/D-葡萄糖检测试剂盒 | 饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析 |
K-SUFRG | 蔗糖/D-果糖/D-葡萄糖检测试剂盒 | 适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定 |
K-TDFR | 总膳食纤维检测试剂盒 | 总膳食纤维检测 |
K-TREH | 海藻糖检测试剂盒 | 快速、可靠地检测食品、饮料和其它物料中海藻糖含量 |
K-URAMR | 尿素/氨快速检测试剂盒 | 适用于水、饮料、乳制品和食品中尿素和氨的快速测定 |
K-URONIC | D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒 | 简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸) |
K-XYLOSE | D-木糖检测试剂盒 | 简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量 |
K-YBGL | Beta葡聚糖[酵母和蘑菇]检测试剂盒 | 检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量 |
新品排行榜
1
Megazyme/Amyloglucosidase (Asper...
2
Megazyme/α-Amylase (Bacill...
3
Megazyme/Arabinoxylan (Wheat Flo...
4
Megazyme/D-Xylose Assay Kit/K-XY...
5
Megazyme/MegaQuant Colorimeter T...
6
Megazyme/Wheat Arabinoxylan (enz...
7
Megazyme/Cellazyme C Tablets/T-C...
8
Megazyme/Amyloglucosidase (Asper...
9
Megazyme/Amylazyme HY Tablets/T-...
10
Megazyme/CM-Pachyman/P-CMPAC/4 g...
文章排行榜
1
Megazyme/Total Starch Assay Kit (AA/AMG) /K-TSTA-100A/100 assays
2
膳食纤维总量检测试剂盒
3
K-TSTA,淀粉总量检测试剂盒,Total Starch (AA/AMG) Assay Kit
4
Megazyme/Phytic Acid (Total Phosphorus) Assay Kit/K-PHYT/50 assays per kit
5
Megazyme/Protease (Subtilisin A from Bacillus licheniformis)/E-BSPRT-10ML/0.5 grams - 10ML
6
Megazyme/AZCL-Pachyman/I-AZPAC/3 grams
7
Megazyme/AZCL-Curdlan (fine)/I-AZCURF/3 grams
8
Megazyme/Total Dietary Fiber Controls/K-TDFC/Sufficient for 6 Controls
9
Bit_试剂_Equl意果_易扩_AdvancedBioMatrix_DivBio_Drummond_Genie_Glascol_Megazyme_Phadebas_Worthington
10
Harlan Bioproducts_试剂_Equl意果_易扩_AdvancedBioMatrix_DivBio_Drummond_Genie_Glascol_Megazyme_Phadebas_Worthington