提醒:代购产品,无质量问题不接受退换货,下单前请仔细核对信息。下单后请及时联系客服 核对商品价格,订单生效后再付款。
Megazyme/D-Glucose HK Assay Kit /K-GLUHK-220A/220 assays (manual) / 2200 (microplate) / 2000 (
价格:

自营商城

解放采购

正品保障

及时交付

厂家直采

一站服务

货号:
品牌:
会员服务:
尊享会员价
贵宾专线
运费优惠
闪电退款
福利优惠
上门换新
友情提示
以上价格仅为参考,请联系客服询价。
免费咨询热线
4000-520-616
产品说明
TheD-GlucoseHK(Regular)testkitisahighpurityreagentforthemeasurementandanalysisofD-glucoseinplantandfoodproducts.CanbeusedincombinationwithotherMegazyme"sproductsthatrequireglucosedetermination.ExtendedcofactorsstABIlity.Dissolvedcofactorsstablefor>1yearat4oC.Suitableformanual,auto-analyserandmicroplateformats.Measurementoftotalstarchincerealproductsbyamyloglucosidase-alpha-amylasemethod:collaborativestudy.McCleary,B.V.,Gibson,T.S.&Mugford,D.C.(1997).JournalofAOACInternational,80,571-579.LinktoArticleReadAbstractAnAmericanAssociationofCerealChemists/AOACcollaborativestudywasconductedtoevaluatetheaccuracyandreliabilityofanenzymeassaykitprocedureformeasurementoftotalstarchinarangeofcerealgrainsandproducts.Thefloursampleisincubatedat95degreesCwithThermostablealpha-amylasetocatalyzethehydrolysisofstarchtomaltodextrins,thepHoftheslurryisadjusted,andtheslurryistreatedwithahighlypurifiedamyloglucosidasetoquantitativelyhydrolyzethedextrinstoglucose.Glucoseismeasuredwithglucoseoxidase-peroxidasereagent.Thirty-twocollaboratorsweresent16homogeneoustestsamplesas8blindduplicates.Thesesamplesincludedchickenfeedpellets,whitebread,greenpeas,high-amylosemaizestarch,whitewheatflour,wheatstarch,oatbran,andspaghetti.Allsampleswereanalyzedbythestandardprocedureasdetailedabove;4samples(high-amylosemaizestarchandwheatstarch)werealsoanalyzedbyamethodthatrequiresthesamplestobecookedfirstindimethylsulfoxide(DMSO).Relativestandarddeviationsforrepeatability(RSD(r))rangedfrom2.1to3.9%,andrelativestandarddeviationsforreproducibility(RSD(R))rangedfrom2.9to5.7%.TheRSD(R)valueforhighamylosemaizestarchanalyzedbythestandard(non-DMSO)procedurewas5.7%;thevaluewasreducedto2.9%whentheDMSOprocedurewasused,andthedeterminedstarchvaluesincreasedfrom86.9to97.2%.Grapeandwineanalysis:Oenologiststoexploitadvancedtestkits.Charnock,S.C.&McCleary,B.V.(2005).RevuedesEnology,117,1-5.LinktoArticleReadAbstractItiswithoutdoubtthattestingplaysapivotalrolethroughoutthewholeofthevinificationprocess.ToproducethebestpossIBLequalitywineandtominimiseprocessproblemssuchas“stuck”fermentationortroublesomeinfections,itisnowrecognisedthatifpossibletestingshouldbeginpriortoharvestingofthegrapesandcontinuethroughtobottling.TrADItionalmethodsofwineanalysisareoftenexpensive,timeconsuming,requireeitherelaborateequipmentorspecialistexpertiseandfrequentlylackaccuracy.However,enzymaticbio-analysisenablestheaccuratemeasurementofthevastmajorityofanalytesofinteresttothewinemaker,usingjustonepieceofapparatus,thespectrophotometer(seepreviousissueNo.116foradetailedtechnicalreview).Grapejuiceandwineareamenabletoenzymatictestingasbeingliquidstheyarehomogenous,easytomanipulate,andcangenerallybeanalysedwithoutanysamplepreparation.Megazyme“advanced”winetestkitsgeneralcharacteristicsandvalidation.Charnock,S.J.,McCleary,B.V.,Daverede,C.&Gallant,P.(2006).ReveuedesOenologues,120,1-5.LinktoArticleReadAbstractManyoftheenzymatictestkitsareofficialmethodsofprestigiousorganisationssuchastheAssociationofOfficialAnalyticalChemicals(AOAC)andtheAmericanAssociationofCerealChemists(AACC)inresponsetotheinterestfromoenologists.Megazymedecidedtouseitslonghistoryofenzymaticbio-analysistomakeasignificantcontributiontothewineindustry,bythedevelopmentofarangeofadvancedenzymatictestkits.Thistaskhasnowbeensuccessfullycompletedthroughthestrategicandcomprehensiveprocessofidentifyinglimitationsofexistingenzymaticbio-analysistestkitswheretheyoccurred,andthenusingadvancedtechniques,suchasmolecularBIOLOGy(photo1),torapidlyovercomethem.Noveltestkitshavealsobeendevelopedforanalytesofemerginginteresttotheoenologist,suchasyeastavailablenitrogen(YAN;seepages2-3ofissue117article),orwherepreviouslyenzymesweresimplyeithernotavailable,orweretooexpensivetoemploy,suchasforD-mannitolanalysis.Measurementofcarbohydratesingrain,feedandfood.McCleary,B.V.,Charnock,S.J.,Rossiter,P.C.,O’Shea,M.F.,Power,A.M.&Lloyd,R.M.(2006).JournaloftheScienceofFoodandAgriculture,86(11),1648-1661.LinktoArticleReadAbstractProceduresforthemeasurementofstarch,starchdamage(gelatinisedstarch),resistantstarchandtheamylose/amylopectincontentofstarch,β-glucan,fructan,glucomannanandgalactosyl-sucroseoligosaccharides(raffinose,stachyoseandverbascose)inplantmaterial,animalfeedsandfoodsaredescribed.Mostofthesemethodshavebeensuccessfullysubjectedtointerlaboratoryevaluation.Allmethodsarebasedontheuseofenzymeseitherpurifiedbyconventionalchromatographyorproducedusingmolecularbiologytechniques.Suchmethodsallowspecific,accurateandreliablequantificationofaparticularcomponent.Problemsincalculatingtheactualweightofgalactosyl-sucroseoligosaccharidesintestsamplesarediscussedindetail.AdvancesinmoleculartoolsfortheuseofZygosaccharomycesbailiiashostforbiotechnologicalproductionsandconstructionofthefirstauxotrophicmutant.Dato,L.,Branduardi,P.,Passolunghi,S.,Cattaneo,D.,Riboldi,L.,Frascotti,G.,Valli,M.&Porro,D.(2010).FEMSYeastResearch,10(7),894-908.LinktoArticleReadAbstractThenonconventionalyeastZygosaccharomycesbailiihasbeenproposedasanewhostforbiotechnologicalprocessesduetoconvenientpropertiessuchasitsresistancetohighsugarconcentrations,relativelyhightemperaturesandespeciallytoacidicenvironments.WedescribeaseriesofnewexpressionvectorsspecificforZ.bailiiandtheresultingimprovementsinproductionlevels.ByexploitingthesequencesoftheendogenousplasmidpSB2,2μm-likemulticopyvectorswereobtained,givingafivefoldincreaseinproduction.Aspecificintegrativevectorwasdevelopedwhichledto100%stabilityintheabsenceofselectivepressure;amultiple-integrationvectorwasconstructed,basedonanrRNAgeneunitportionclonedandsequencedforthispurpose,drivingtheinsertionofupto80copiesoftheforeignconstruct.Moreover,weshowtheconstructionofthefirststableauxotrophicmutantofZ.bailii,obtainedbytargetedgenedeletionappliedtoZbLEU2.ThedevelopmentofmoleculartoolsfortheZ.bailiimanipulationhasnowreachedalevelthatmaybecompatiblewithitsindustrialexploitation;theproductionoforganicacidsisaprominentfieldofapplication.InfluenceofdifferentcarbonsourcesonbacterialcelluloseproductionbyGluconacetobacterxylinusstrainATCC53524.Mikkelsen,D.,Flanagan,B.M.,Dykes,G.A.&Gidley,M.J.(2009).JournalofAppliedMicrobiology,107(2),576-583.LinktoArticleReadAbstractAims:TodeterminetheeffectofcarbonsourcesoncelluloseproducedbyGluconacetobacterxylinusstrainATCC53524,andtocharacterizethepurityandstructuralfeaturesofthecelluloseproduced.MethodsandResults:ModifiedHestrinSchrammmediumcontainingthecarbonsourcesmannitol,glucose,glycerol,fructose,sucroseorgalactosewereinoculatedwithGa.xylinusstrainATCC53524.Platecountsindicatedthatallcarbonsourcessupportedgrowthofthestrain.Sucroseandglycerolgavethehighestcelluloseyieldsof3•83and3•75gl-1respectivelyafter96hfermentation,primarilyduetoasurgeincelluloseproductioninthelast12h.Mannitol,fructoseorglucoseresultedinconsistentratesofcelluloseproductionandyieldsof>2•5gl-1.Solidstate13CCP/MASNMRrevealedthatirrespectiveofthecarbonsource,thecelluloseproducedbyATCC53524waspureandhighlycrystalline.Scanningelectronmicrographsillustratedthedenselypackednetworkofcellulosefibreswithinthepelliclesandthatthedifferentcarbonsourcesdidnotmarkedlyalterthemicro-architectureoftheresultingcellulosepellicles.Conclusions:TheproductionrateofbacterialcellulosebyGa.xylinus(ATCC53524)wasinfluencedbydifferentcarbonsources,buttheproductformedwasindistinguishableinmolecularandmicroscopicfeatures.SignificanceandImpactoftheStudy:OurstudiesforthefirsttimeexaminedtheinfluenceofdifferentcarbonsourcesontherateofcelluloseproductionbyGa.xylinusATCC53524,andthemolecularandmicroscopicfeaturesofthecelluloseproduced.GalactomannanhydrolysisandmannosemetabolisminCellvibriomixtus.Centeno,M.S.,Guerreiro,C.I.P.D.,Dias,F.M.V.,Morland,C.,Tailford,L.E.,Goyal,A.,Prates,J.A.M.,Ferreira,L.M.A.,Caldeira,R.M.H.,Mongodin,E.F.,Nelson,K.E.,Gilbert,H.J.&Fontes,C.M.(2006).FEMSMicrobiologyLetters,261(1),123-132.LinktoArticleReadAbstractGalactomannanhydrolysisresultsfromtheconcertedactionofmicrobialendo-mannanases,manosidasesandα-galactosidasesandisamechanismofintrinsicbiologicalimportance.HerewereporttheidentificationofageneclusterintheaerobicsoilbacteriumCellvibriomixtusencodingenzymesinvolvedinthedegradationofthispolymericsubstrate.Thefamily27α-galactosidase,termedCmAga27A,preferentiallyhydrolysegalactosecontainingpolysaccharides.Inaddition,wehavecharacterizedanenzymewithepimeraseactivity,whichmightberesponsiblefortheconversionofmannoseintoglucose.Theroleoftheidentifiedenzymesinthehydrolysisofgalactomannanbyaerobicbacteriaisdiscussed.SensorcombinationandchemometricvariableselectionforonlinemonitoringofStreptomycescoelicolorfed-batchcultivations.Ödman,P.,Johansen,C.L.,Olsson,L.,Gernaey,K.V.&Lantz,A.E.(2010).AppliedMicrobiologyandBiotechnology,86(6),1745-1759.LinktoArticleReadAbstractFed-batchcultivationsofStreptomycescoelicolor,producingtheantibioticactinorhodin,weremonitoredonlinebymultiwavelengthfluorescencespectroscopyandoff-gasanalysis.Partialleastsquares(PLS),locallyweightedregression,andmultilinearPLS(N-PLS)modelswerebuiltforpredictionofbiomassandsubstrate(casaminoacids)concentrations,respectively.Theeffectofcombinationoffluorescenceandgasanalyzerdataaswellasofdifferentvariableselectionmethodswasinvestigated.Improvedpredictionmodelswereobtainedbycombinationofdatafromthetwosensorsandbyvariableselectionusingageneticalgorithm,intervalPLS,andtheprincipalvariablesmethod,respectively.Astepwisevariableeliminationmethodwasappliedtothethree-wayfluorescencedata,resultinginsimplerandmoreaccurateN-PLSmodels.Thepredictionmodelswerevalidatedusingleave-one-batch-outcross-validation,andthebestmodelshadrootmeansquareerrorofcross-validationvaluesof1.02gl-1biomassand0.8gl-1totalaminoacids,respectively.Thefluorescencedatawerealsoexploredbyparallelfactoranalysis.Theanalysisrevealedfourspectralprofilespresentinthefluorescencedata,threeofwhichwereidentifiedaspyridoxine,NAD(P)H,andflavinnucleotides,respectively.Sealingabilityofanewpolydimethylsiloxane-basedrootcanalfillingmaterial.Özok,A.R.,vanderSluis,L.W.M.,Wu,M.K.&Wesselink,P.R.(2008).JournalofEndodontics,34(2),204-207.LinktoArticleReadAbstractWetestedthenullhypothesisthatthereisnodifferenceinthesealingabilityofGuttaFlow,RoekoSeal,andAH26inrootcanals.SixtyextractedmandibularpremolarswerefilledwithAH26(lateralcompaction),RoekoSeal,orGuttaFlow(modifiedsingle-cone).Thesealingabilityoftherootcanalfillingswasmeasuredweekly(4weeks)byusingaglucosepenetrationmodel.Kruskal-Wallistestrevealedsignificantdifferencesinglucosepenetrationbetweentheexperimentalgroupsatweeks1,2,3,and4.WhereasGuttaFlowshowedthehighestamountofleakageatalltimes,AH26showedthelowest.TherewasnosignificantdifferencebetweenRoekoSeal-filledandAH26-filledrootcanalsthroughouttheexperimentalperiod.AH26showedbettersealingabilityinrootcanalsthanGuttaFlow.Adiposetriglyceridelipaseplaysakeyroleinthesupplyoftheworkingmusclewithfattyacids.Schoiswohl,G.,Schweiger,M.,Schreiber,R.,Gorkiewicz,G.,Preiss-Landl,K.,Taschler,U.,Zierler,K.A.,Radner,F.P.W.,Eichmann,T.O.,Kienesberger,P.C.,Eder,S.,Lass,A.,Haemmerle,G.,Alsted,T.J.,Kiens,B.,Hoefler,G.,Zechner,R.&Zimmermann,R.(2010).JournalofLipidResearch,51(3),490-499.LinktoArticleReadAbstractFAsaremobilizedfromtriglyceride(TG)storesduringexercisetosupplytheworkingmusclewithenergy.Micedeficientforadiposetriglyceridelipase(ATGL-ko)exhibitdefectivelipolysisandaccumulateTGinadiposetissueandmuscle,suggestingthatATGLdeficiencyaffectsenergyavailabilityandsubstrateutilizationinworkingmuscle.Inthisstudy,weinvestigatedtheeffectofmoderatetreadmillexerciseonbloodenergymetabolitesandliverglycogenstoresinmicelackingATGL.BecauseATGL-komiceexhibitmassiveaccumulationofTGintheheartandcardiomyopathy,wealsoinvestigatedamousemodellackingATGLinalltissuesexceptcardiacmuscle(ATGL-ko/CM).IncontrasttoATGL-komice,thesemicedidnotaccumulateTGintheheartandhadnormallifeexpectancy.ExerciseexperimentsrevealedthatATGL-koandATGL-ko/CMmiceareunabletoincreasecirculatingFAlevelsduringexercise.ThereducedavailabilityofFAforenergyconversionledtorapiddepletionofliverglycogenstoresandhypoglycemia.Together,ourstudiessuggestthatATGL-komicecannotadjustcirculatingFAlevelstotheincreasedenergyrequirementsoftheworkingmuscle,resultinginanincreaseduseofcarbohydratesforenergyconversion.Thus,ATGLactivityisrequiredforproperenergysupplyoftheskeletalmuscleduringexercise.Experimentalevidenceforasignificantcontributionofcellulosetoindooraerosolmassconcentration.Cerqueira,M.,Marques,D.,Caseiro,A.&Pio,C.(2010).AtmosphericEnvironment,44(6),867-871.LinktoArticleReadAbstractAnapartmentbedroomlocatedinaresidentialareaofAveiro(Portugal)wasselectedwiththeaimofcharacterizingthecellulosecontentofindooraerosolparticles.Twosetsofsamplesweretaken:(1)PM10collectedsimultaneouslyinindoorandoutdoorair;(2)PM10andPM2.5collectedsimultaneouslyinindoorair.Theaerosolparticleswereconcentratedonquartzfibrefilterswithlow-volumesamplersequippedwithsizeselectiveinlets.Thefilterswereweighedandthenextractedforcelluloseanalysisbyanenzymaticmethod.Theaverageindoorcelluloseconcentrationwas1.01±0.24μgm-3,whereastheaverageoutdoorcelluloseconcentrationwas0.078±0.047μgm-3,accountingfor4.0%and0.4%,respectively,ofthePM10mass.Thecorrespondingaverageratiobetweenindoorandoutdoorcelluloseconcentrationswas11.1±4.9,indicatingthatcelluloseparticlesweregeneratedindoors,mostlikelyduetothehandlingofcotton-madetextilesasaresultofroutinedailyactivitiesinthebedroom.Indoorcelluloseconcentrationsaveraged1.22±0.53μgm-3intheaerosolcoarsefraction(determinedfromthedifferencebetweenPM10andPM2.5concentrations)andaveraged0.38±0.13μgm-3intheaerosolfinefraction.Theaverageratiobetweenthecoarseandfinefractionsofcelluloseconcentrationsintheindoorairwas3.6±2.1.Thisratioisinlinewiththeprimaryoriginofthisbiopolymer.ResultsfromthisstudyprovidethefirstexperimentalevidenceinsupportofasignificantcontributionofcellulosetothemassofsUSPendedparticlesinindoorair.EffectofHXT1andHXT7hexosetransporteroverexpressiononwild-typeandlacticacidproducingSaccharomycescerevisiaecells.Rossi,G.,Sauer,M.,Porro,D.&Branduardi,P.(2010).MicrobialCellFactories,9(1),15.LinktoArticleReadAbstractBackground:Sinceaboutthreedecades,Saccharomycescerevisiaecanbeengineeredtoefficientlyproduceproteinsandmetabolites.Evenrecognizingthatinbaker"syeastonedeterminingstepfortheglucoseconsumptionrateisthesugaruptake,thisfacthasneverbeenconceivedtoimprovethemetabolite(s)productivity.Inthisworkwecomparedtheethanoland/orthelacticacidproductionfromwildtypeandmetabolicallyengineeredS.cerevisiaecellsexpressinganadditionalcopyofonehexosetransporter.Results:DifferentS.cerevisiaestrains(wildtypeandmetabolicallyengineeredforlacticacidproduction)weretransformedwiththeHXT1ortheHXT7geneencodingforhexosetransporters.DataobtainedsuggestthattheoverexpressionofanHxttransportermayleadtoanincreaseinglucoseuptakethatcouldresultinanincreasedethanoland/orlacticacidproductivities.Asaconsequenceoftheincreasedproductivityandofthereducedprocesstiming,ahigherproductionwasmeasured.Conclusions:Metabolicpathwaymanipulationforimprovingthepropertiesandtheproductivityofmicroorganismsisawellestablishedconcept.Ahighproductionreliesonamulti-factorialsystem.Weshowedthatbymodulatingthefirststepofthepathwayleadingtolacticacidaccumulationanimprovementofabout15%inlacticacidproductioncanbeobtainedinayeaststrainalreadydevelopedforindustrialapplication.Constructionandcharacterizationofthreelactatedehydrogenase-negativeEnterococcusfaecalisV583mutants.Jönsson,M.,Saleihan,Z.,Nes,I.F.&Holo,H.(2009).AppliedandEnvironmentalMicrobiology,75(14),4901-4903.LinktoArticleReadAbstractTherolesofthetwoldhgenesofEnterococcusfaecaliswerestudiedusingknockoutmutants.Deletionofldh-1causesametabolicshiftfromhomolacticfermentationtoethanol,formate,andacetoinproduction,withahighlevelofformateproductionevenunderaerobicconditions.Ldh-2playsonlyaminorroleinlactateproduction.UV-methodforthedeterminationofD-Glucoseinfoodstuffs,beveragesandothermaterialsPrinciple:             (hexokinase)(1)D-Glucose+ATP→G-6-P+ADP   (glucose-6-phosphatedehydrogenase)(2)G-6-P+NADP+→gluconate-6-phosphate+NADPH+H+Kitsize:                         (K-GLUHK-110A)* 110assays(manual)/1100(microplate)                                         /1000(auto-analyser)or                                         (K-GLUHK-220A)* 220assays(manual)/2200(microplate)                                          /2000(auto-analyser)* Thenumberofmanualtestsperkitcanbedoubledifallvolumesarehalved. ThiscanbereadilyaccommodatedusingtheMegaQuantTM WaveSpectrophotometer(D-MQWAVE).Method:                          Spectrophotometricat340nmReactiontime:                 ~5minDetectionlimit:                0.66mg/LApplicationexamples:Wine,beer,fruitjuices,softdrinks,milk,jam,dieteticfoods,bakeryproducts,candies,fruitandvegetables,tobacco,cosmetics,pharmaceuticals(e.g.infusions),feed,paper(andcardboard)andothermaterials(e.g.biologicalcultures,samples,etc.)Methodrecognition:   MethodsbasedonthisprinciplehavebeenacceptedbyAOAC,EN,NEN,NF,DIN,GOST,OIV,IFU,AIJNandMEBAKAdvantagesVerycompetitiveprice(costpertest) Allreagentsstablefor>2yearsafterpreparation Rapidreaction Mega-Calc™softwaretoolisavailablefromourwebsiteforhassle-freerawdataprocessing Standardincluded Extendedcofactorsstability Suitableformanual,microplateandauto-analyserformats

Megazyme品牌产品简介

来源:作者:人气:2149发表时间:2016-05-19 10:59:00【  
Megazyme检测试剂盒 - 用于食品、饲料、乳制品、葡萄酒分析
Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
Megazyme检测试剂盒产品◆ 检测试剂盒
◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号 中文品名 用途
K-ACETAF 乙酸[AF法]检测试剂盒 酶法定量分析乙酸最广泛使用的方法
K-ACHDF 可吸收糖/膳食纤维检测试剂盒 酒精沉淀法测定膳食纤维
K-AMIAR 氨快速检测试剂盒 用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。
K-AMYL 直链淀粉/支链淀粉检测试剂盒 谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测
K-ARAB 阿拉伯聚糖检测试剂盒 果汁浓缩液中阿拉伯聚糖的检测
K-ASNAM L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒 用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析
K-ASPTM 阿斯巴甜检测试剂盒 专业用于测定饮料和食品中阿斯巴甜含量,操作简单
K-BETA3 β-淀粉酶检测试剂盒 适用于麦芽粉中β-淀粉酶的测定
K-BGLU 混合键β-葡聚糖检测试剂盒 测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量
K-CERA α-淀粉酶检测试剂盒 谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定
K-CITR 柠檬酸检测试剂盒 快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量
K-DLATE 乳酸快速检测试剂盒 快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量
K-EBHLG 酵母β-葡聚糖酶检测试剂盒 用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖
K-ETSULPH 总亚硫酸检测试剂盒 测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法
K-FRGLMQ D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒 适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。
K-FRUC 果聚糖检测试剂盒 含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。
K-FRUGL D-果糖/D-葡萄糖检测试剂盒 对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。
K-GALM 半乳甘露聚糖检测试剂盒 食品和植物产品中半乳甘露聚糖的含量检测
K-GLUC D-葡萄糖[GOPOD]检测试剂盒 谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUHK D-葡萄糖[HK]检测试剂盒 植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUM 葡甘聚糖检测试剂盒 植物和食品中葡甘聚糖的含量测定。
K-INTDF 总膳食纤维检测试剂盒 总膳食纤维特定检测和分析
K-LACGAR 乳糖/D-半乳糖快速检测试剂盒 用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖
K-LACSU 乳糖/蔗糖/D-葡萄糖检测试剂盒 混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定
K-LACTUL 乳果糖检测试剂盒 特异性、快速和灵敏测量奶基样品中乳果糖含量
K-MANGL D-甘露糖/D-果糖/D-葡萄糖检测试剂盒 适合测定植物产品和多糖酸性水解产物中D-甘露糖含量
K-MASUG 麦芽糖/蔗糖/D-葡萄糖检测试剂盒 在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测
K-PECID 胶质识别检测试剂盒 食品配料中果胶的鉴别
K-PHYT 植酸(总磷)检测试剂盒 食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析
K-PYRUV 丙酮酸检测试剂盒 在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析
K-RAFGA 棉子糖/D-半乳糖检测试剂盒 快速测量植物材料和食品中棉子糖和半乳糖含量
K-RAFGL 棉子糖/蔗糖/D-半乳糖检测试剂盒 分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定
K-SDAM 淀粉损伤检测试剂盒 谷物面粉中淀粉损伤的检测和分析
K-SUCGL 蔗糖/D-葡萄糖检测试剂盒 饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析
K-SUFRG 蔗糖/D-果糖/D-葡萄糖检测试剂盒 适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定
K-TDFR 总膳食纤维检测试剂盒 总膳食纤维检测
K-TREH 海藻糖检测试剂盒 快速、可靠地检测食品、饮料和其它物料中海藻糖含量
K-URAMR 尿素/氨快速检测试剂盒 适用于水、饮料、乳制品和食品中尿素和氨的快速测定
K-URONIC D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒 简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸)
K-XYLOSE D-木糖检测试剂盒 简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量
K-YBGL Beta葡聚糖[酵母和蘑菇]检测试剂盒 检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量
客服在线
service-logo
已有 人查看该问题
tel
全国免费服务热线
4000-520-616
微信公众号
关注我们
手机扫码,关注动态