提醒:代购产品,无质量问题不接受退换货,下单前请仔细核对信息。下单后请及时联系客服 核对商品价格,订单生效后再付款。
Megazyme/D-Glucuronic/D-Galacturonic Acid Assay Kit/K-URONIC/100 assays (manual) / 1000 assays (microplate) / 1000 assays (a
价格:

自营商城

解放采购

正品保障

及时交付

厂家直采

一站服务

货号:
品牌:
会员服务:
尊享会员价
贵宾专线
运费优惠
闪电退款
福利优惠
上门换新
友情提示
以上价格仅为参考,请联系客服询价。
免费咨询热线
4000-520-616
产品说明
TheD-Glucuronic/D-Galacturonictestkitisa simple,reliableandaccuratemethodforthemeasurementandanalysisofD-hexuronicacids(specificallyD-glucuronicacidandD-galacturonicacid)inplantextracts,culturemedia/supernatantsandothermaterials.Suitableformanual,auto-analyserandmicroplateformats.Identificationoffeaturesassociatedwithplantcellwallrecalcitrancetopretreatmentbyalkalinehydrogenperoxideindiversebioenergyfeedstocksusingglycomeprofiling.Li,M.,Pattathil,S.,Hahn,M.G.&Hodge,D.B.(2014).RSCAdvances,4(33),17282-17292.LinktoArticleReadAbstractAwoodydicot(hybridpoplar),anherbaceousdicot(goldenrod),andagraminaceousmonocot(cornstover)weresubjectedtoalkalinehydrogenperoxide(AHP)pretreatmentandsubsequentenzymatichydrolysisinordertoassesshowtaxonomicallyandstructurallydiversebiomassfeedstocksrespondtoamildalkalineoxidativepretreatmentandhowdifferingfeaturesofthecellwallmatrixcontributetoitsrecalcitrance.Usingglycomeprofiling,wedeterminedchangesintheextractABIlityofnon-cellulosicglucansfollowingpretreatmentbyscreeningextractsofthepretreatedwallswithapanelof155cellwallglycan-directedmonoclonalantibodiestodeterminedifferencesintheabundanceanddistributionofnon-cellulosicglycanepitopesintheseextractsandassesspretreatment-inducedchangesinthestructuralintegrityofthecellwall.Twotaxonomically-dependentoutcomesofpretreatmentwereidentifiedthatbothimprovedthesubsequentenzymatichydrolysisyieldsbutdifferedintheirimpactsoncellwallstructuralintegrity.Specifically,itwasrevealedthatgoldenrodwallsexhibiteddecreasesinallclassesofalkali-extractableglycansindicatingtheirsolubilizationduringpretreatment,whichwasaccompaniedbyanimprovementinthesubsequentextractabilityoftheremainingcellwallglycans.Thecornstoverwallsdidnotshowthesamedecreasesinglycanabundanceinextractsfollowingpretreatment,butrathermildincreasesinallclassesofcellwallglycans,indicatingoverallweakerassociationsbetweencellwallpolymersandimprovedextractability.Thehybridpoplarwallswererelativelyunaffectedbypretreatmentintermsofcomposition,enzymatichydrolysis,andtheextractabilityofcellwallglycansduepresumablytotheirhigherlignincontentanddenservascularstructure.CorrelatingligninstructuralfeaturestophasepartitioningbehaviorinanovelaqueousfractionationofsoftwoodKraftblackliquor.Stoklosa,R.J.,Velez,J.,Kelkar,S.,Saffron,C.M.,Thies,M.C.&Hodge,D.B.(2013).GreenChemistry,15(10),2904-2912.LinktoArticleReadAbstractInthiswork,asetofsoftwoodligninswererecoveredfromaKraftblackliquorusinganovelpH-basedfractionationprocessinvolvingsequentialCO2acidificationandseparationofthesolvatedaqueousligninfraction.TheserecoveredligninsfractionswerecharacterizedwithrespecttopropertiesthatmayberesponsIBLefortheirphasepartitioningbehavioraswellaspropertiesthatmayrendertheligninsmoresuitableformaterialsapplications.LigninfractionswererecoveredbetweenapHrangeof12.8and9.5withthebulkofthelignin(90%)recoveredbetweenapHof11.1and10.0.Whileallthefractionswerefoundtoconsistprimarilyofligninasvalidatedbysamplemethoxylcontent,thefirstfractionstophaseseparatedwerefoundtobeespeciallyenrichedinaliphaticextractivesandpolysaccharides.FromthebulkoftheligninthatwasrecoveredbetweenapHof11.1and10.0anumberofnoteworthytrendswerediscerniblefromthedata.Specifically,thephenolichydroxylcontentwasfoundtoexhibitastrongnegativecorrelationtothefractionationpHandexhibitedanearly50%increasewithrecoveryatdecreasingpH,whiletheGPC-estimatedmolecularweightsand13CNMR-estimatedβ-O-4contentshowedstrongpositivecorrelationstothepHatrecovery.Thealiphatichydroxylcontentexhibitedminimaldifferencesbetweenrecoveryconditions.Overall,theseresultssuggestthatthisfractionationapproachcangenerateligninfractionsenrichedinselectphysicalorstructuralpropertiesthatmaybeimportantfortheirapplicationasfeedstocksforrenewablechemicalsormaterials.DietarySupplementationwithSolublePlantainNon-StarchPolysaccharidesInhibitsIntestinalInvasionofSalmonellaTyphimuriumintheChicken.Parsons,B.N.,Wigley,P.,Simpson,H.L.,Williams,J.M.,Humphrey,S.,Salisbury,A.M.,Watson,A.J.,Fry,S.C.,O"Brien,D.,Roberts,C.L.,O"Kennedy,N.,Keita,Å.V.,Söderholm,J.D.,Rhodes,J.M.&Campbell,B.J.(2014).PloSOne,9(2),e87658.LinktoArticleReadAbstractSolublefibres(non-starchpolysaccharides,NSP)fromedibleplantsbutparticularlyplantainbanana(Musaspp.),havebeenshowninvitroandexvivotopreventvariousentericpathogensfromadheringto,ortranslocatingacross,thehumanintestinalepithelium,apropertythatwehavetermedcontrabiotic.HerewereportthatdietaryplantainfibrepreventsinvasionofthechickenintestinalmucosabySalmonella.InvivoexperimentswereperformedwithchicksfedfromhatchonapelletdietcontainingsolubleplantainNSP(0to200mg/d)andorallyinfectedwithS.Typhimurium4/74at8dofage.Birdsweresacrificed3,6and10dpost-infection.Bacteriawereenumeratedfromliver,spleenandcaecalcontents.InvitrostudieswereperformedusingchickencaecalcryptsandporcineintestinalepithelialcellsinfectedwithSalmonellaentericaSEROvarsfollowingpre-treatmentseparatelywithsolubleplantainNSPandacidicorneutralpolysaccharidefractionsofplantainNSP,eachcomparedwithsalinevehicle.Bacterialadherenceandinvasionwereassessedbygentamicinprotectionassay.InvivodietarysupplementationwithplantainNSP50mg/dreducedinvasionbyS.Typhimurium,asreflectedbyviablebacterialcountsfromsplenictissue,by98.9%(95%CI,98.1–99.7;PInvitrostudiesconfirmedthatplantainNSP(5–10mg/ml)inhibitedadhesionofS.Typhimurium4/74toaporcineepithelialcell-line(73%meaninhibition(95%CI,64–81);PPex-vivohumanilealmucosashowedthatthiseffectwasassociatedwithincreasedshortcircuitcurrentbutnochangeinelectricalresistance.TheinhibitoryactivityofplantainNSPlaymainlywithintheacidic/pectic(homogalacturonan-rich)component.SupplementationofchickfeedwithplantainNSPwaswelltoleratedandshowspromiseasasimpleapproachforreducinginvasivesalmonellosis.Optimizationofaformic/aceticaciddelignificationtreatmentonbeechwoodanditsinfluenceonthestructuralcharacteristicsoftheextractedlignins.Simon,M.,Brostaux,Y.,Vanderghem,C.,Jourez,B.,Paquot,M.&Richel,A.(2014).JournalofChemicalTechnologyandBiotechnology,89(1),128-136.LinktoArticleReadAbstractBackground:InordertoreplacepetRochemicalsbybio-basedligninproductsinhighvalue-addedapplications,aformic/aceticacidtreatmentwasadaptedtobeechwood(FagussylvaticaL.)forligninextraction.Results:Beechwoodparticlesweredelignifiedatatmosphericpressurebyaformicacid/aceticacid/watermixture.Cookingtimeandtemperaturewereoptimizedfordelignification,pulpyieldand2-furfuralconcentration.Responsesurfacedesignanalysisrevealedthatdelignificationyieldincreasedwithcookingtimeandtemperature.Conclusion:Themulti-criteriaoptimizationofdelignificationwasusedtofindtheidealcookingconditions(5h07min,104.2°C)tomaximizedelignification(70.5%)andpulpyield(58.7%)and,toalesserextent,minimize2-furfuralproduction.Treatmentconditionswerefoundtoinfluencethechemicalstructureofextractedlignins.Cookingtimeandtemperatureinverselyinfluencedligninmolecularweights.Fractionationandimprovedenzymaticdeconstructionofhardwoodswithalkalinedelignification.Stoklosa,R.J.&Hodge,D.B.(2015).BioEnergyResearch,8(3),1224-1234.LinktoArticleReadAbstractInthiswork,analkalinedelignificationwasinvestigatedforseveralindustriallyrelevanthardwoodstounderstandthekineticsofxylansolubilizationanddegradationandtheroleofresiduallignincontentinsettingcellwallrecalcitrancetoenzymatichydrolysis.Between34and50 %ofthexylanwassolubilizedduringtheheat-upstageofthepretreatmentandundergoesdegradation,depolymerization,aswellassubstantialdisappearanceoftheglucuronicacidsubstitutionsonthexylanduringthebulkdelignificationphase.Animportantfindingisthatsubstantialxylanisstillpresentintheliquorwithoutdegradation.Cellulosehydrolysisyieldsintherangeof80to90 %wereachievablewithin24–48 hforthediversehardwoodssubjectedtodelignificationbyalkaliatmodestenzymeloADIngs.Itwasfoundthatsubstantialdelignificationwasnotnecessarytoachievethesehighhydrolysisyieldsandthathybridpoplarsubjectedtopretreatmentremovingonly46 %oftheligninwascapableofreachingyieldscomparabletohybridpoplarpretreatedto67or86 %ligninremoval.Decreasingthelignincontentwasfoundtoincreasetheinitialrateofcellulosehydrolysistoglucosewhilelignincontentsunderapproximately70 mg/goriginalbiomasswerefoundtoslightlydecreasethemaximumextentofhydrolysis,presumablyduetodrying-inducedcelluloseaggregationandporecollapse.Pretreatmentswereperformedonwoodchips,whichnecessitateda“disintegration”stepfollowingpretreatment.Thisallowedtheeffectofcomminutionmethodtobeinvestigatedforthethreehardwoodssubjectedtothehighestlevelofdelignification.Itwasfoundthatadditionalknife-millingfollowingdistintegrationdidnotimpacteithertherateorextentofglucanandxylanhydrolysis.KineticpropertiesofRhizopusoryzaeRPG1endo-polygalacturonasehydrolyzinggalacturonicacidoligomers.Mertens,J.A.&Bowman,M.J.(2016).BiocatalysisandAgriculturalBiotechnology,5,11-16.LinktoArticleReadAbstractThekineticcharacteristicsofRhizopusoryzaeendo-polygalacturonase,RPG1,hydrolyzinggalacturonicacidoligomers(GalpA)nweredetermined.RPG1generates(GalpA)3asadominantproductofpolygalacturonicacidand(GalpA)4-6hydrolysis.Theenzymecanhydrolyze(GalpA)3,buthydrolysisoccursatasignificantlylowerraterelativetooligomerswithahigherdegreeofpolymerization.Hydrolysisoftheα-1,4glycosidicbondbyRPG1isanendothermicprocesswithaδHapp,of1.03±0.04 kcal/mol.Determinationofkineticconstantsbyisothermaltitrationcalorimetryshowedthatforoligomers(GalpA)3-6,theKmdecreasedandtheKcatincreasedasthelengthofthe(GalpA)oligomerincreased.FixedtimepointassaysfollowedbychromatographicanalysisprovidedapparentKcatvaluessimilartothosefoundusingisothermaltitrationcalorimetry.Assaystodeterminetowhatextenttheenzymeissubjecttoproductinhibitiondemonstratedthattheenzymeiscompetitivelyinhibitedby(GalpA)2whenusing(GalpA)4assubstrate.TheapparentKiof767µMissignificantlyhigherthantheKmvaluesobtainedfortheseriesofgalacturonicacidoligomers.Characterisationofthreefungalglucuronoylesterasesonglucuronicacidestermodelcompounds.Hüttner,S.,Klaubauf,S.,deVries,R.P.&Olsson,L.(2017).AppliedMicroBIOLOGyandBiotechnology,1-11.LinktoArticleReadAbstractTheglucuronoylesterases(GEs)thathavebeenidentifiedsofarbelongtofamily15ofthecarbohydrateesterasesintheCAZyclassificationsystemandarepresumedtotargetesterbondsbetweenligninalcoholsand(4-O-methyl-)D-glucuronicacidresiduesofxylan.FewGEshavebeencloned,expressedandcharacterisedtodate.Characterisationhasbeendoneonavarietyofsyntheticsubstrates;however,thenumberofcommerciallyavailablesubstratesisverylimited.WeidentifiednovelputativeGEsfromawidetaxonomicrangeoffungiandexpressedtheenzymesoriginatingfromAcremoniumalcalophilumandWolfiporiacocosaswellasthepreviouslydescribedPcGE1fromPhanerochaetechrysosporium.AllthreefungalGEswereactiveonthecommerciallyavailablecompoundsbenzylglucuronicacid(BnGlcA),allylglucuronicacid(allylGlcA)andtoalowerdegreeonmethylglucuronicacid(MeGlcA).TheenzymesshowedpHstabilityoverawidepHrangeandtolerated6-hincubationsofupto50°C.KineticparametersweredeterminedforBnGlcA.ThisstudyshowsthesuitabilityofthecommerciallyavailablemodelcompoundsBnGlcA,MeGlcAandallylGlcAinGEactivityscreeningandcharacterisationexperiments.WeenrichedthespectrumofcharacterisedGEswithtwonewmembersofarelativelyyoungenzymefamily.Duetoitsbiotechnologicalsignificance,thisfamilydeservestobemoreextensivelystudied.Thepresentedenzymesarepromisingcandidatesasauxiliaryenzymestoimprovesaccharificationofplantbiomass.ActionofaGH115α-glucuronidasefromAmphibacillusxylanusatalkalineconditionpromotesreleaseof4-O-methylglucopyranosyluronicacidfromglucuronoxylanandarabinoglucuronoxylan.Yan,R.,Vuong,T.V.,Wang,W.&Master,E.R.(2017).EnzymeandMicrobialTechnology,104, 22-28.LinktoArticleReadAbstractGlucuronicacidand/or4-O-methyl-glucuronicacid(GlcA/MeGlcA)aresubstituentsofthemainxylanspresentinhardwoods,conifers,andmanycerealgrains.α-GlucuronidasesfromglycosidehydrolasefamilyGH115cantargetGlcA/MeGlcAfrombothinternallyandterminallysubstitutedregionsofxylans.ThecurrentstudydescribesthefirstGH115α-glucuronidase,AxyAgu115A,fromthealkaliphilicorganismAmphilbacillusxylanus.AxyAgu115AwasactiveinawidepHrange,anddemonstratedbetterperformanceinalkalineconditioncomparedtoothercharacterizedGH115α-glucuronidases,whichgenerallyshowoptimalactivityinacidicconditions.Specifically,itsrelativeactivitybetweenpH5.0andpH8.5wasabove80%,andwas35%ofmaximumatpH10.5;althoughtheenzymelost30%and80%relativeresidualactivityafter24-hpre-incubationatpH9andpH10,respectively.AxyAgu115Awasalsosimilarlyactivetowardsglucuronoxylanaswellascomparativelycomplexxylanssuchassprucearabinoglucurunoxylan.AccommodationofcomplexxylanswassupportedbydockinganalysesthatpredictedaccessibilityofAxyAgu115Atobranchedxylo-oligosaccharides.MeGlcAreleasebyAxyAgu115Afromeachxylansamplewasincreasedbyupto30%byperformingthereactionatpH11.0ratherthanpH4.0,revealingappliedbenefitsofAxyAgu115Aforxylanrecoveryandprocessing.Fungalglucuronoylesterases:genomeminingbasedenzymediscoveryandbiochemicalcharacterization.Dilokpimol,A.,Mäkelä,M.R.,Cerullo,G.,Zhou,M.,Varriale,S.,Gidijala,L.,Brás,J.L.A.,Jütten,P.,Piechot,A.,Verhaert,R.,Faraco,V.,Hilden,K.S.&deVries,R.P.(2017).NewBiotechnology,InPress.LinktoArticleReadAbstract4-O-Methyl-D-glucuronicacid(MeGlcA)isaside-residueofglucuronoarabinoxylanandcanformesterlinkagestolignin,contributingsignificantlytothestrengthandrigidityoftheplantcellwall.Glucuronoylesterases(4-O-methyl-glucuronoylmethylesterases,GEs)cancleavethisesterbond,andthereforemayplayasignificantroleasauxiliaryenzymesinbiomasssaccharificationfortheproductionofbiofuelsandbiochemicals.GEsbelongtoarelativelynewfamilyofcarbohydrateesterases(CE15)intheCAZydatabase(www.cazy.org),andsofararoundtenfungalGEshavebeencharacterized.ToexploreadditionalGEenzymes,weusedagenomeminingstrategy.BLASTanalysiswithcharacterizedGEsagainstapproximately250publiclyaccessiblefungalgenomesidentifiedmorethan150putativefungalGEs,whichwereclassifiedintoeightphylogeneticsub-groups.Tovalidatethegenomeminingstrategy,21selectedGEsfrombothascomyceteandbasidiomycetefungiwereheterologouslyproducedinPichiapastoris.Oftheseenzymes,18wereactiveagainstbenzylD-glucuronatedemonstratingthesuitabilityofourgenomeminingstrategyforenzymediscovery.UV-methodforthedeterminationofD-GlucuronicAcidorD-GalacturonicAcidinhydrolysatesofplantmaterialandpolysaccharidesandothermaterialsPrinciple:                    (Uronatedehydrogenase;UDH)(1)D-Glucuronicacid+NAD++H2O→D-glucarate+NADH+H+                     (Uronatedehydrogenase;UDH)(2)D-Galacturonicacid+NAD++H2O→D-galactarate+NADH+H+Kitsize:                         *100assays(manual)/1000(microplate)                                       /1000(auto-analyser)* Thenumberofmanualtestsperkitcanbedoubledifallvolumesarehalved. ThiscanbereadilyaccommodatedusingtheMegaQuantTM WaveSpectrophotometer(D-MQWAVE).Method:                          Spectrophotometricat340nmReactiontime:                 ~10minat25°Cor~5minat37°CDetectionlimit:                ~17mg/LApplicationexamples:HydrolysatesofplantmaterialandpolysaccharidesandothermaterialsMethodrecognition:   NovelmethodAdvantagesVerycosteffective Allreagentsstablefor>2yearsduringuse Onlytestkitavailable Simpleformat Mega-Calc™softwaretoolisavailablefromourwebsiteforhassle-freerawdataprocessing Standardincluded Suitableformanual,microplateandauto-analyserformats

Megazyme品牌产品简介

来源:作者:人气:2149发表时间:2016-05-19 10:59:00【  
Megazyme检测试剂盒 - 用于食品、饲料、乳制品、葡萄酒分析
Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
Megazyme检测试剂盒产品◆ 检测试剂盒
◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号 中文品名 用途
K-ACETAF 乙酸[AF法]检测试剂盒 酶法定量分析乙酸最广泛使用的方法
K-ACHDF 可吸收糖/膳食纤维检测试剂盒 酒精沉淀法测定膳食纤维
K-AMIAR 氨快速检测试剂盒 用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。
K-AMYL 直链淀粉/支链淀粉检测试剂盒 谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测
K-ARAB 阿拉伯聚糖检测试剂盒 果汁浓缩液中阿拉伯聚糖的检测
K-ASNAM L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒 用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析
K-ASPTM 阿斯巴甜检测试剂盒 专业用于测定饮料和食品中阿斯巴甜含量,操作简单
K-BETA3 β-淀粉酶检测试剂盒 适用于麦芽粉中β-淀粉酶的测定
K-BGLU 混合键β-葡聚糖检测试剂盒 测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量
K-CERA α-淀粉酶检测试剂盒 谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定
K-CITR 柠檬酸检测试剂盒 快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量
K-DLATE 乳酸快速检测试剂盒 快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量
K-EBHLG 酵母β-葡聚糖酶检测试剂盒 用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖
K-ETSULPH 总亚硫酸检测试剂盒 测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法
K-FRGLMQ D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒 适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。
K-FRUC 果聚糖检测试剂盒 含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。
K-FRUGL D-果糖/D-葡萄糖检测试剂盒 对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。
K-GALM 半乳甘露聚糖检测试剂盒 食品和植物产品中半乳甘露聚糖的含量检测
K-GLUC D-葡萄糖[GOPOD]检测试剂盒 谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUHK D-葡萄糖[HK]检测试剂盒 植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUM 葡甘聚糖检测试剂盒 植物和食品中葡甘聚糖的含量测定。
K-INTDF 总膳食纤维检测试剂盒 总膳食纤维特定检测和分析
K-LACGAR 乳糖/D-半乳糖快速检测试剂盒 用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖
K-LACSU 乳糖/蔗糖/D-葡萄糖检测试剂盒 混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定
K-LACTUL 乳果糖检测试剂盒 特异性、快速和灵敏测量奶基样品中乳果糖含量
K-MANGL D-甘露糖/D-果糖/D-葡萄糖检测试剂盒 适合测定植物产品和多糖酸性水解产物中D-甘露糖含量
K-MASUG 麦芽糖/蔗糖/D-葡萄糖检测试剂盒 在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测
K-PECID 胶质识别检测试剂盒 食品配料中果胶的鉴别
K-PHYT 植酸(总磷)检测试剂盒 食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析
K-PYRUV 丙酮酸检测试剂盒 在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析
K-RAFGA 棉子糖/D-半乳糖检测试剂盒 快速测量植物材料和食品中棉子糖和半乳糖含量
K-RAFGL 棉子糖/蔗糖/D-半乳糖检测试剂盒 分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定
K-SDAM 淀粉损伤检测试剂盒 谷物面粉中淀粉损伤的检测和分析
K-SUCGL 蔗糖/D-葡萄糖检测试剂盒 饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析
K-SUFRG 蔗糖/D-果糖/D-葡萄糖检测试剂盒 适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定
K-TDFR 总膳食纤维检测试剂盒 总膳食纤维检测
K-TREH 海藻糖检测试剂盒 快速、可靠地检测食品、饮料和其它物料中海藻糖含量
K-URAMR 尿素/氨快速检测试剂盒 适用于水、饮料、乳制品和食品中尿素和氨的快速测定
K-URONIC D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒 简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸)
K-XYLOSE D-木糖检测试剂盒 简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量
K-YBGL Beta葡聚糖[酵母和蘑菇]检测试剂盒 检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量
客服在线
service-logo
已有 人查看该问题
tel
全国免费服务热线
4000-520-616
微信公众号
关注我们
手机扫码,关注动态