产品说明
TheLactose/Galactose(Rapid)testkitisusedfor therapidtestoflactose,D-galactoseandL-arABInoseinfoodandplantproducts.GalactosedehydrogenasecanbeusedthemeasurementandanalysisofbothD-galactoseandL-arabinose.Suitablefortheanalysisoflactosein“low-lactose”or“lactose-free”sampleswhichcontainhighlevelsofmonosaccharides. ThereagentsprovidedinthiskitarealsosuitableforusewithAOACmethod2006.06–Lactoseinmilk.LactosefermentationbyKombucha–aprocesstoobtainnewmilk–basedbeverages.Iličić,M.,Kanurić,K.,Milanović,S.,Lončar,E.,Djurić,M.&Malbaša,R.(2012).RomanianBiotechnologicalLetters,17(1),7013-7021.LinktoArticleReadAbstractThispaperfocusesonfermentationoflactosefromamodelsystem(blacktea)andfromtwotypesofmilk(0.9%w/wand2.2%w/woffat)byapplicationofKombucha.QuantitiesoftheappliedKombuchastarterwere10%v/vand15%v/v.Allfermentationswereperformedat42°C.TheprocesstoachieveadesirablepH=4.5wasslowerinthemodelsystem(16h)thaninmilks(9-10h).Regardingstarterquantity,10%v/vprovedtheoptimal.Regardingtypesofmilk,higherfatcontentguaranteesshorterfermentationandhigheryieldofmetabolites.Utilizationoflactosewasfoundatalevelof≈20%and≈30%inmilkswith0.9%w/wand2.2%w/woffat,respectively.Thiswascorrelatedwithanappearanceofintermediatesand/orproducts.Glucoseunderwentfurthertransformationsalmostentirely,whilegalactoseshowedmuchlowerreactivity.Seventotwelvetimeshighercontentsoflacticacidwerefoundcomparedtoaceticacid.Milk-basedbeveragefromthereducedfatsample,inoculatedwith10%v/vofKombuchastarter,hasthebestphysicalcharacteristics(syneresisandwaterholdingcapacity).Italsodevelopedagoodtexture(especiallycohesivenessandindexofviscosity).Milklactosefermentationwasaprocessthatcouldhavebeenusedforobtainingnewmilk-basedproducts.Theeffectoftransglutaminaseonrheologyandtextureoffermentedmilkproducts.Iličić,M.D.,Milanović,S.D.,Carić,M.Ð.,Vukić,V.R.,Kanurić,K.G.,Ranogajec,M.I.&Hrnjez,D.V.(2013).JournalofTextureStudies,44(2),160-168.LinktoArticleReadAbstractTheaimofthisstudywastoinvestigatetheeffectoftransglutaminase(TG)additiononrheologicalproperties,texturalcharacteristicsandmicrostructureoffermentedmilkproductsmanufacturedbydifferentstarters(probioticsandkombuchainoculum).Rheologicalanalysisrevealedthatallmanufacturedfermentedmilkproductshadhigherstoragemodulusthanlossmodulusandexhibitedthixotropicandatypicalshearthinningbehavior.TheadditionofTGinmilkincreasedapproximately10.5%hysteresislooparea,39%firmnessand48%consistencyinsampleproducedwithprobioticstarterandhadmorefirmandstablegelstructurethankombuchafermentedmilkproducts.ThescanningelectronmicroscopymicrographsshowedthatcaseinmatrixoffermentedmilkproductscontainingTGiscontinuousanduninterruptedexceptforvoidspacesoccupiedbymilkserumandstarterculturecell.Molecularcharacterizationandsolutionpropertiesofenzymaticallytailoredarabinoxylans.Pitkänen,L.,Tuomainen,P.,Virkki,L.&Tenkanen,M.(2011).InternationalJournalofBIOLOGicalMacromolecules,49(5),963-969.LinktoArticleReadAbstractTwoα-L-arabinofuranosidaseswithdifferentsubstratespecificitieswereusedtomodifythearabinose-to-xyloseratioofcerealarabinoxylans:oneenzyme(AXH-m)removedtheL-arabinofuranosylsubstituentsfromthemonosubstitutedxylopyranosylresiduesandtheother(AXH-d3)the(1→3)-linkedL-arabinofuranosylunitsfromthedisubstitutedxylopyranosylresidue.Inthisstudy,wenoticedthatnotonlythearabinose-to-xyloseratiobutalsothepositionofthearabinofuranosylsubstituentsaffectsthewater-solubilityofarabinoxylans.TheAXH-d3treatmenthadnosignificanteffectonthesolutionconformationofarabinoxylans,butthedensityofthearabinoxylanmoleculesdecreasedinDMSOsolutionafterAXH-mmodification.ThepossIBLeheterogeneityofarabinoxylanscomplicatedtheinterpretationofdatadescribingthemacromolecularpropertiesoftheenzymaticallymodifiedsamples.Analysisofthearabinoxylanarabinofuranohydrolasegenefamilyinbarleydoesnotsupporttheirinvolvementintheremodellingofendospermcellwallsduringdevelopment.Laidlaw,H.K.,Lahnstein,J.,Burton,R.A.,Fincher,G.B.&Jobling,S.A.(2012).JournalofExperimentalBotany,63(8),3031-3045.LinktoArticleReadAbstractArabinoxylanarabinofuranohydrolases(AXAHs)arefamilyGH51enzymesthathavebeenimplicatedintheremovalofarabinofuranosylresiduesfromthe(1,4)-β-xylanbackboneofheteroxylans.FivegenesencodingbarleyAXAHsrangeinsizefrom4.6kbto7.1kbandeachcontains16introns.ThebarleyHvAXAHgenesmaptochromosomes2H,4H,and5H.AsmallclusterofthreeHvAXAHgenesislocatedonchromosome4Handthereisevidenceforgeneduplicationandthepresenceofpseudogenesinbarley.TheCDNAscorrespondingtobarleyandwheatAXAHgeneswerecloned,andtranscriptlevelsofthegeneswereprofiledacrossarangeoftissuesatdifferentdevelopmentalstages.TwoHvAXAHcDNAsthatweresuccessfullyexpressedinNicotianabenthamianaleavesexhibitedsimilaractivitiesagainst4-nitrophenylα-L-arabinofuranoside,butHvAXAH2activitywassignificantlyhigheragainstwheatflourarabinoxylan,comparedwithHvAXAH1.HvAXAH2alsodisplayedactivityagainst(1,5)-α-L-arabinopentaoseanddebranchedarabinan.Westernblottingwithananti-HvAXAHantibodywasusedtodefinefurtherthelocationsoftheAXAHenzymesindevelopingbarleygrain,wherehighlevelsweredetectedintheouterlayersofthegrainbutlittleornoproteinwasdetectedintheendosperm.Thechromosomallocationsofthegenesdonotcorrespondtoanypreviouslyidentifiedgenomicregionsshowntoinfluenceheteroxylanstructure.ThedataarethereforeconsistentwitharoleforAXAHindepolymerizingarabinoxylansinmaternaltissuesduringgraindevelopment,butdonotprovidecompellingevidenceforaroleinremodellingarabinoxylansduringendospermorcoleoptiledevelopmentinbarleyaspreviouslyproposed.Bacterialnanocellulose‐reinforcedarabinoxylanfilms.Stevanic,J.S.,Joly,C.,Mikkonen,K.S.,Pirkkalainen,K.,Serimaa,R.,Rémond,C.,Toriz,G.,Gatenholm,P.,Tenkanen,M.&Salmén,L.(2011).JournalofAppliedpolymerscience,122(2),1030-1039.LinktoArticleReadAbstractThereisanincreasinginterestinsubstitutingtoday"sfilmsforfoodpackagingapplicationswithfilmsbasedonrenewableresources.Forthispurpose,ryearabinoxylans,unmodifiedandenzymaticallydebranched,werestudiedforthepreparationofneatfilmsandcompositefilmsreinforcedwithbacterialcellulose(BC).Mixinginahomogenizerproducedopticallytransparent,uniformfilms.Physicalandmechanicalcharacteristicsofsuchfilmsareherereported.Debranchingofthearabinoxylancausedanincreaseinitscrystallinityof20%.DebranchingaswellasreinforcementwithBCresultedinadecreaseofthemoisturesorptionofthefilms.ThedebranchingalsoresultedinareducedbreakingstrainwhilethereinforcementwithBCincreasedstiffnessandstrengthofthefilms.InnovativeCaciocavallocheesesmadefromamixtureofcowmilkwitheweorgoatmilk.Niro,S.,Fratianni,A.,Tremonte,P.,Sorrentino,E.,Tipaldi,L.,Panfili,G.&Coppola,R.(2014).JournalofDairyScience,97(3),1296-1304.LinktoArticleReadAbstractThisstudyassessedandcomparedthephysicochemical,microbiological,andsensorialcharacteristicsofCaciocavallocheeses,madefromcowmilkandamixtureofcowwitheweorgoatmilk,duringripening.Differentcheese-makingtrialswerecarriedoutonanindustrialscalefollowingthestandardprocedureofpastafilatacheeses,withsomemodifications.Thepercentageofthedifferentaddedmilktocowmilkinfluencedcompositionalandnutritionalcharacteristicsoftheinnovativeproducts,leADIngtoasatisfactorymicrobiologicalandsensorialquality.Simultaneousuptakeoflignocellulose‐basedmonosaccharidesbyEscherichiacoli.Jarmander,J.,Hallström,B.M.&Larsson,G.(2014).BiotechnologyandBioengineering,111(6),1108-1115.LinktoArticleReadAbstractLignocellulosicwasteisanaturallyabundantbiomassandisthereforeanattractivematerialtouseinsecondgenerationbiorefineries.Microbialgrowthonthemonosaccharidespresentinhydrolyzedlignocelluloseishoweverassociatedwithseveralobstacleswhereofoneisthelackofsimultaneousuptakeofthesugars.WehavestudiedtheaerobicgrowthofEscherichiacolionD-glucose,D-xylose,andL-arabinoseandforsimultaneousuptaketooccur,boththecarboncataboliterepressionmechanism(CCR)andtheAraCrepressionofxyloseuptakeandmetabolismhadtoberemoved.ThestrainAF1000isaMC4100derivativethatisonlyabletoassimilatearabinoseafteraconsiderablelagphase,whichisunsuitableforcommercialproduction.ThisstrainwassuccessfullyadaptedtogrowthonL-arabinoseandthisledtosimultaneousuptakeofarabinoseandxyloseinadiauxicgrowthmodefollowingglucoseconsumption.Inthisstrain,adeletioninthephosphoenolpyruvate:phosphotransferasesystem(PTS)forglucoseuptake,theptsGmutation,wasintroduced.Theresultingstrain,PPA652arasimultaneouslyconsumedallthreemonosaccharidesatamaximumspecificgrowthrateof0.59 h-1,55%higherthanfortheptsGmutantalone.Also,noresidualsugarwaspresentinthecultivationmedium.ThepotentialofPPA652araisfurtheracknowledgedbytheperformanceofAF1000duringfed-batchprocessingonamixtureofD-glucose,D-xylose,andL-arabinose.Theconclusionisthatwithouttheremovalofbothlayersofcarbonuptakecontrol,thisprocessresultsinaccumulationofpentosesandleadstoareductionofthespecificgrowthrateby30%.Galactosecanbeaninducerforproductionoftherapeuticproteinsbyauto-inductionusingE.coliBL21strains.Xu,J.,Banerjee,A.,Pan,S.H.&Li,Z.J.(2012).ProteinExpressionandPurification,83(1),30-36.LinktoArticleReadAbstractRecentlylactosemediatedauto-inductioninEscherichiacolihasgainedalotofinterestbecausehigherproteintitercouldbeachievedwithouttheneedtomonitorgrowthandaddinduceratthepropertime.Inthisstudyahighleveltherapeuticproteinproductionbyauto-inductionwasobservedinE.coliBL21usingeitherT7ortacpromotersinthemodifiedLuriaBertani(mLB)mediumcontainingsoypeptoneinsteadoftryptoneinLuriaBertani(LB)medium.Basedonmediumanalysisandspikingexperimentsitwasfoundthat0.4mMgalactosefromthesoypeptonecausedtheauto-induction.E.coliculturesinducedbygalactosecansaturateatconsiderablyhigherdensitythanculturesinducedbyIPTG.GalactoseisnotconsumedbyE.coliBL21.Finallyithasbeendemonstratedthatauto-inductioncanbeeffectivelyusedinfed-batchfermentationfortheindustrialproductionofatherapeuticprotein.Theprincipleofgalactosemediatedauto-inductionshouldbeabletoapplytohighthroughputmicroplates,shakeflasksandfed-batchfermentorsforclonescreeningandtherapeuticproteinexpressioninE.coligal-strainssuchasmostcommonlyusedBL21.Productionofan18%proteinliquidmicellarcaseinconcentratewithalongrefrigeratedshelflife.Amelia,I.&Barbano,D.M.(2013).JournalofDairyScience,96(5),3340-3349.LinktoArticleReadAbstractOurobjectivewastodevelopaprocesstoproduceahigh-concentrationliquidmicellarcaseinconcentrate(18%protein,MCC18)withalongrefrigeratedshelflife.TheMCC18isanovelmilkproteiningredientproducedbyfractionatingskimmilkusingMICROFILtration(MF).Toachievealongrefrigeratedshelflife,theprocessingofMCC18wasdesignedtomaximizetheremovaloflow-molecularweightcompounds[e.g.,lactoseandnonproteinnitrogen(NPN)]thatcanbeeasilymetabolizedbymicrobes,whileminimizingthemicrobialcountinthefinalproduct.TheproductionofMCC18wasdoneoveraperiodof5d.Theexperimentwasreplicated3timesindifferentweekswithadifferentbatchofrawmilk.Rawwholemilkwaspasteurizedandseparatedtoproduceskimmilk.Skimmilkwasultrafiltered(UF)toremovemorethanhalfofthelactoseandNPN.TheUFmilkretentatewasdilutedwithwaterandthenMFin3stagestoremoveapproximately95%oftheserumproteinandfurtherremovelactoseandNPN.TheretentatefromthelaststageofMFwasUFtoconcentratetheproteinto18%andbatchpasteurized.TheMCC18wascollectedimmediatelyafterprocessinginsterileplasticvialsandstoredat4°C.TheaverageMCC18contained21.78%totalsolids,18.27%trueprotein,0.31%NPN,and0.13%lactose.TheMCC18atthedayofprocessingcontainedameanaerobicbacterialcountof2.1logcfu/mLandmeanaerobicsporecountof2.3logcfu/mL.TheMCC18formedasolidgelattemperatures22°C.Thisprovidesauniqueopportunityiningredienthandlingandpackagingandeliminatesthechallengesencounteredinreconstitutionofdriedmilkproteiningredients.TheMCC18producedinthisstudymaintainedabacteriacountProductionofbioethanolfromeffluentsofthedairyindustrybyKluyveromycesmarxianus.Zoppellari,F.&Bardi,L.(2013).NewBiotechnology,30(6),607-613.LinktoArticleReadAbstractWheyandscottaareeffluentscomingfromcheeseandricottaprocessingrespectively.Wheycontainsminerals,lipids,lactoseandproteins;scottacontainsmainlylactose.Wheycanbereusedinseveralways,suchasproteinextractionoranimalfeeding,whilenowadaysscottaisjustconsideredasawaste;moreover,duetoveryhighvolumesofwheyproducedintheworld,itposesseriousenvironmentalanddisposalproblems.Alternativedestinationsoftheseeffluents,suchasbiotechnologicaltransformations,canbeawaytoreachbothgoalsofimprovingtheaddedvalueoftheagroindustrialprocessesandreducingtheirenvironmentalimpact.Inthisworkweinvestigatedthewaytoproducebioethanolfromlactoseofwheyandscottaandtooptimizethefermentationyields.Kluyveromycesmarxianusvar.marxianuswaschosenaslactose-fermentingyeast.Batch,aerobicandanaerobic,fermentationsandsemicontinuousfermentationsindispersedphaseandinpackedbedreactorwerecarriedoutofrowwhey,scottaandmix1:1whey:scottaatalaboratoryscale.Differenttemperatures(28–40°C)werealsotestedtocheckwhethertheThermotoleranceofthechosenyeastcouldbeusefultoimprovetheethanolyield.Thebestperformanceswerereachedatlowtemperatures(28°C);hightemperaturesarealsocompatiblewithgoodethanolyieldsinwheyfermentations,butnotinscottafermentations.Semicontinuousfermentationsindispersedphasegavethebestfermentationperformances,particularlywithscotta.Thenbotheffluentscanbeconsideredsuitableforethanolproduction.Thegoodyieldsobtainedfromscottaallowustotransformthiswasteinasource.NovelCombinationofPrebioticsGalacto-OligosaccharidesandInulin-InhibitedAberrantCryptFociFormationandBioMarkersofColonCancerinWistarRats.Qamar,T.R.,Syed,F.,Nasir,M.,Rehman,H.,Zahid,M.N.,Liu,R.H.&Iqbal,S.(2016).Nutrients,8(8),465.LinktoArticleReadAbstractTheselectivityandbeneficialeffectsofprebioticsaremainlydependentoncompositionandglycosidiclinkageamongmonosaccharideunits.Thisisthefirststudytouseprebioticgalacto-oligosaccharides(GOS)thatcontainsβ-1,6andβ-1,3glycosidiclinkagesandthenovelcombinationofGOSandinulinincancerprevention.TheobjectiveofthepresentstudyistoexploretheroleofnovelGOSandinulinagainstvariousbiomarkersofcolorectalcancer(CRC)andtheincidenceofaberrantcryptfoci(ACF)ina1,2-dimethylhydrazinedihydrochloride(DMH)-inducedrodentmodel.PrebiotictreatmentsofcombinedGOSandinulin(57mgeach),aswellasindividualdoses(GOS:76–151mg;inulin114mg),weregiventoDMH-treatedanimalsfor16weeks.OurdatarevealthesignificantpreventiveeffectoftheGOSandinulincombinationagainstthedevelopmentofCRC.ItwasobservedthatinhibitionofACFformation(55.8%)wassignificantly(p ≤0.05)higherusingtheGOSandinulincombinationthanGOS(41.4%)andinulin(51.2%)treatmentsalone.Thiscombinationalsorenderedbetterresultsonshort-chainfattyacids(SCFA)andbacterialenzymaticactivities.Dose-dependenteffectsofprebiotictreatmentswerealsoobservedoncecumandfecalbacterialenzymesandonSCFA.Thus,thisstudydemonstratedthatnovelcombinationofGOSandinulinexhibitedstrongerpreventiveactivitythantheirindividualtreatmentsalone,andcanbeapromisingstrategyforCRCchemoprevention.14-3-3γregulateslipopolysaccharide-inducedinflammatoryresponsesandlactationindairycowmammaryepithelialcellsbyinhibitingNF-κBandMAPKsandup-regulatingmTORsignaling.Liu,L.,Lin,Y.,Liu,L.,Bian,Y.,Zhang,L.,Gao,X.&Li,Q.(2015).InternationalJournalofMolecularSciences,16(7),16622-16641.LinktoArticleReadAbstractAsaprotectivefactorforlipopolysaccharide(LPS)-inducedinjury,14-3-3γhasbeenthesubjectofrecentresearch.Nevertheless,whether14-3-3γcanregulatelactationindairycowmammaryepithelialcells(DCMECs)inducedbyLPSremainsunknown.Here,theanti-inflammatoryeffectandlactationregulatingabilityof14-3-3γinLPS-inducedDCMECsareinvestigatedforthefirsttime,andthemolecularmechanismsresponsiblefortheireffectsareexplored.TheresultsofqRT-PCRshowedthat14-3-3γoverexpressionsignificantlyinhibitedthemRNAexpressionoftumornecrosisfactor-α(TNF-α),interleukin-6(IL-6),interleukin-1Β(IL-1β)andinduciblenitricoxidesynthase(iNOS).Enzyme-linkedimmunosorbentassay(ELISA)analysisrevealedthat14-3-3γoverexpressionalsosuppressedtheproductionofTNF-αandIL-6incellculturesupernatants.Meanwhile,CASY-TTAnalyserSystemshowedthat14-3-3γoverexpressionclearlyincreasedtheviabilityandproliferationofcells.Theresultsofkitmethodsandwesternblotanalysisshowedthat14-3-3γoverexpressionpromotedthesecretionoftriglyceridesandlactoseandthesynthesisofβ-casein.Furthermore,theexpressionofgenesrelevanttonuclearfactor-κB(NF-κB)andmitogen-activatedproteinkinase(MAPKs)andlactation-associatedproteinswereassessedbywesternblot,andtheresultssuggestedthat14-3-3γoverexpressioninactivatedtheNF-κBandMAPKsignalingpathwaysbydown-regulatingextracellularsignalregulatedproteinkinase(ERK),p38mitogen-activatedproteinkinase(p38MAPK)andinhibitorofNF-κB(IκB)phosphorylationlevels,aswellasbyinhibitingNF-κBtranslocation.Meanwhile,14-3-3γoverexpressionenhancedtheexpressionlevelsofΒ-casein,mammaliantargetofrapamycin(mTOR),ribosomalproteinS6kinase1(S6K1),serine/threonineproteinkinaseAkt1(AKT1),sterolregulatoryelementbindingprotein1(SREBP1)andperoxisomeproliferator-activatedreceptorgamma(PPARγ).Theseresultssuggestthat14-3-3γwasabletoattenuatetheLPS-inducedinflammatoryresponsesandpromoteproliferationandlactationinLPS-inducedDCMECsbyinhibitingtheactivationoftheNF-κBandMAPKsignalingpathwaysandup-regulatingmTORsignalingpathwaystoprotectagainstLPS-inducedinjury.Productionofimpureprebioticgalacto-oligosaccharidesandtheireffectoncalcium,magnesium,ironandzincabsorptioninSprague-Dawleyrats.Maawia,K.,Iqbal,S.,Qamar,T.R.,Rafiq,P.,Ullah,A.&Ahmad,M.(2016).PharmaNutrition,4(4),154-160.LinktoArticleReadAbstractPrebioticgalacto-oligosaccharides(GOS)areimportant“functionalfoods”ofcurrentscenarioandusedforvarioushealthbenefitsincludingimprovedmineralabsorption.Inthepresentstudy,itwashypothesizedthatnovelGOSmixture,producedthroughtransgalactosylation,withsignificantamountofmonoanddisaccharidesmayenhancemineralabsorptioninSprague-Dawleyrats.Thenon-purifiedGOShavingβ-(1 → 6)andβ-(1 → 3)glycosidiclinkage,wereevaluatedforapparentabsorptionofcalcium,magnesium,ironandzinc.Theratsweredividedintotwomaingroups(n = 12pergroup,6male/6female)fedoncontrolandGOS(5 g/100 g)diet.Thefeceswerecollectedafter7 daysintervalfor28 days.Theweightgain,feedandwaterintakewerestatisticallysimilar(p EpigeneticregulationofmiR‐29saffectsthelactationactivityofdairycowmammaryepithelialcells.Bian,Y.,Lei,Y.,Wang,C.,Wang,J.,Wang,L.,Liu,L.,Liu,L.,.Gao,X.&Li,Q.(2015).JournalofCellularPhysiology,230(9),2152-2163.LinktoArticleReadAbstractMilkisimportantforhumannutrition,andenhancedmilkqualityhasbecomeamajorselectioncriterionforthegeneticimprovementoflivestock.Epigeneticmodificationshavebeenshowntobeinvolvedinmammaryglanddevelopment;butthemechanismsunderlyingtheireffectsremainunknown.MicroRNAsareinvolvedintheregulationofmilksynthesisandinmammaryglanddevelopment.OurstudyisthefirsttoinvestigatetherolesofmiR-29sandepigeneticregulationindairycowmammaryepithelialcells(DCMECs).OurresultsshowthatmiR-29sregulatetheDNAmethylationlevelbyinverselytargetingbothDNMT3AandDNMT3BinDCMECs.TheinhibitionofmiR-29scausedglobalDNAhypermethylationandincreasedthemethylationlevelsofthepromotersofimportantlactation-relatedgenes,includingcaseinalphas1(CSN1S1),E74-likefactor5(ElF5),peroxisomeproliferator-activatedreceptorgamma(PPARγ),sterolregulatoryelementbindingprotein-1(SREBP1),andglucosetransporter1(GLUT1).TheinhibitionofmiR-29sreducedthesecretionoflactoprotein,triglycerides(TG)andlactosebyDCMECs.Moreover,thetreatmentofDCMECswith5-aza-2′-deoxycytidine(5-Aza-dC)decreasedthemethylationlevelsofthemiR-29bpromoterandincreasedtheexpressionofmiR-29b.ThelinkbetweenmiR-29sandDNMT3A/3BenhancesourunderstandingoftherolesofmiRNAsinmammaryglandfunction,andourdatawillinformmoreexperimentallyorientedstudiestoidentifynewmechanismsofregulatinglactation.Wepresentnewinsightsregardingtheepigeneticregulationoflactationperformance.Improvedunderstandingofthemolecularbasisoflactationwillaidinthedevelopmentofstrategiesforoptimizingmilkqualityindairycowsandmodifyingthelactationperformanceofoffspring.BistabilityandNonmonotonicInductionofthelacOperonintheNaturalLactoseUptakeSystem.Zander,D.,Samaga,D.,Straube,R.&Bettenbrock,K.(2017).BiophysicalJournal,112(9),1984-1996.LinktoArticleReadAbstractTheEscherichiacolilacoperonisregulatedbyapositivefeedbackloopwhosepotentialtogenerateanall-or-noneresponseinsinglecellshasbeenaparadigmforbistablegeneexpression.However,sofarbistablelacinductionhasonlybeenobservedusinggratuitousinducers,raisingthequestionaboutthebiologicalrelevanceofbistablelacinductioninthenaturalsettingwithlactoseastheinducer.Infact,theexistingexperimentalevidencepointstoagradedratherthananall-or-noneresponseinthenaturallactoseuptakesystem.Incontrast,predictionsbasedoncomputationalmodelsofthelactoseuptakepathwayremaincontroversial.Althoughsomeargueinfavorofbistability,othersargueagainstit.Here,wereinvestigate lac operonexpressioninsinglecellsusingacombinedexperimental/modelingapproach.Tothisend,weparameterizeawell-supportedmathematicalmodelusingtransientmeasurementsofLacZactivityuponinductionwithdifferentamountsoflactose.Theresultingmodelpredictsamonostableinductioncurveforthewild-typesystem,butindicatesthatoverexpressionoftheLacIrepressorwoulddrivethesystemintothebistableregime.Bothpredictionswereconfirmedexperimentallysupportingtheviewthatthewild-typelacinductioncircuitgeneratesagradedresponseratherthanbistability.Moreinterestingly,wefindthatthelacinductioncurveexhibitsapronouncedmaximumatintermediatelactoseconcentrations.Supportedbyourdata,amodel-basedanalysissuggeststhatthenonmonotonicresponseresultsfromsaturationoftheLacIrepressoratlowinducerconcentrationsanddilutionofLacenzymesduetoanincreasedgrowthratebeyondthesaturationpoint.WespeculatethattheobservedmaximuminthelacexpressionlevelhelpstosavecellularresourcesbylimitingLacenzymeexpressionathighinducerconcentrations.Effectofcalciumreductiononthepropertiesofhalf-fatCheddar-stylecheeseswithfull-saltorhalf-salt.McCarthy,C.M.,Wilkinson,M.G.&Guinee,T.P.(2017).InternationalDairyJournal,73,38-49.LinktoArticleReadAbstractStandard-calcium(SCa)andreduced-calcium(RCa)half-fat(16%)Cheddar-stylecheeseswithfull-salt(1.9%)orhalf-salt(0.9%)weremadeintriplicate,ripenedfor270d,andanalysedforcompositionandchangesinlactosemetabolism,pH,proteolysis,water-sorption,fracturepropertiesandheat-inducedflowabilityduringmaturation.Thepressingloadappliedtothemouldedcheesewasmodifiedtoensureequalmoistureinallcheesesdespitethedifferencesinsaltandcalciumlevels.TheRCacheeseswerecharacterizedbyhigherprimaryproteolysis(αs1-caseindegradation,pH4.6-solubleNdevelopment),lowersecondaryproteolysis(concentrationoffreeaminoacids),higherwater-holdingcapacityonreducingrelativehumidityfrom85to5%,lowerfracturestressandstrain,andmoreextensiveflowonheating.Overall,theusecalciumreduction,whenusedinconjunctionwithmoisturenormalization,provedaneffectivemeansofcounteractingtheadverseeffectsoffatreductionontextureandcookingpropertiesinhalf-fat,half-saltcheese.AnnexinA2PositivelyRegulatesMilkSynthesisandProliferationofBovineMammaryEpithelialCellsthroughthemTORSignalingPathway.Zhang,M.,Chen,D.,Zhen,Z.,Ao,J.,Yuan,X.&Gao,X.(2017).JournalofCellularPhysiology,InPress.LinktoArticleReadAbstractAnnexinA2(AnxA2)hasbeenshowntoplaymultiplerolesingrowth,developmentandmetabolism,butthefunctionsofAnxA2andthesignalingpathwaysassociatedwithAnxA2arestillnotfullyunderstood.Inthisstudy,weaimtorevealwhetherandhowAnxA2couldbeinvolvedinmilksynthesisandproliferationofbovinemammaryepithelialcells(BMECs).Usinggenefunctionstudyapproaches,wefoundthatAnxA2positivelyregulatesPIP3level,phosphorylationofmTORandproteinlevelsofSREBP-1candCyclinD1leadingtomilksynthesisandcellproliferation.WefurtherobservedthatbothAnxA2-36kDphosphorylatedformandAnxA2-33kDproteincouldbeinducedfromAnxA2-36kDproteininBMECsundermethionine,leucine,estrogenorprolactinstimulation.TheseaboveresultsstronglydemonstratethatAnxA2functionsasacriticalregulatorforaminoacidorhormone-inducedmilksynthesisandcellproliferationviathePI3K-mTOR-SREBP-1c/CyclinD1signalingpathway.EvolutionoffreeaminoacidsduringripeningofCaciocavallocheesesmadewithdifferentmilks.Niro,S.,Succi,M.,Tremonte,P.,Sorrentino,E.,Coppola,R.,Panfili,G.&Fratianni,A.(2017).JournalofDairyScience,InPress.LinktoArticleReadAbstractTheevolutionoffreeaminoacids(FAA)inCaciocavallocheeses,madewithcowmilk(CC)andcowmilkmixedwithewe(CE)andgoat(CG)milk,wasstudiedthroughoutripening.InallCaciocavallocheesesproduced,thetotalfreeaminoacid(TFAA)contentincreasedduringripening.Ingeneral,thehighestTFAAcontentwasfoundincowcheeses,andthelowestinCGcheeses,whereasCEcheesesrangedoveranintermediatelevel.Inalltheanalyzedsamples,duringripening,thecontentoftheindividualFAAincreasedwiththeexceptionofarginine.TyrosineandhistidinewerefoundonlyinCEsamplesfromthemiddletotheendofripening.ThemajorFAAfoundthroughoutthewholeripeningperiod,inalltypesofcheese,wereleucine,phenylalanine,lysine,valine,asparagine,γ-aminobutyricacid,andornithine.TheTFAAandseveralAAshowedsignificantdifferencesinripeningtime,whereastyrosineandhistidineshowedsignificantdifferencesinkindsofmilk.UV-methodforthedeterminationofLactoseandD-Galactoseinfoodstuffs,beveragesandothermaterialsPrinciple: (β-galactosidase)(1)Lactose+H2O→D-galactose+D-glucose (galactosemutarotase)(2)α-D-Galactose↔β-D-galactose (β-galactosedehydrogenase)(3)β-D-Galactose+NAD+→D-galactonicacid+NADH+H+Kitsize: * 115assays* Thenumberofmanualtestsperkitcanbedoubledifallvolumesarehalved. ThiscanbereadilyaccommodatedusingtheMegaQuantTM WaveSpectrophotometer(D-MQWAVE).Method: Spectrophotometricat340nmReactiontime: ~15minDetectionlimit: 2.96mg/L(lactose)Applicationexamples:Milk,dairyproducts(e.g.cream,milk/wheypowder,cheese,condensedmilkandyogurt),foodscontainingmilk(e.g.dieteticfoods,bakeryproducts,babyfood,chocolate,sweetsandice-cream),foodadditives,feed,cosmetics,pharmaceuticalsandothermaterials(e.g.biologicalcultures,samples,etc.)Methodrecognition: MethodsbasedonthisprinciplehavebeenacceptedbyAOAC2006.06,NBN,DIN,GOSTandIDFAdvantagesVeryrapidreactionduetoinclusionofgalactosemutarotase(patentedtechnologyPCT/IE2004/00170) Verycompetitiveprice(costpertest) Allreagentsstablefor>2yearsafterpreparation Mega-Calc™softwaretoolisavailablefromourwebsiteforhassle-freerawdataprocessing Standardincluded
Megazyme品牌产品简介

Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
Megazyme的主要产品线包括:

◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号 | 中文品名 | 用途 |
K-ACETAF | 乙酸[AF法]检测试剂盒 | 酶法定量分析乙酸最广泛使用的方法 |
K-ACHDF | 可吸收糖/膳食纤维检测试剂盒 | 酒精沉淀法测定膳食纤维 |
K-AMIAR | 氨快速检测试剂盒 | 用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。 |
K-AMYL | 直链淀粉/支链淀粉检测试剂盒 | 谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测 |
K-ARAB | 阿拉伯聚糖检测试剂盒 | 果汁浓缩液中阿拉伯聚糖的检测 |
K-ASNAM | L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒 | 用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析 |
K-ASPTM | 阿斯巴甜检测试剂盒 | 专业用于测定饮料和食品中阿斯巴甜含量,操作简单 |
K-BETA3 | β-淀粉酶检测试剂盒 | 适用于麦芽粉中β-淀粉酶的测定 |
K-BGLU | 混合键β-葡聚糖检测试剂盒 | 测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量 |
K-CERA | α-淀粉酶检测试剂盒 | 谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定 |
K-CITR | 柠檬酸检测试剂盒 | 快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量 |
K-DLATE | 乳酸快速检测试剂盒 | 快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量 |
K-EBHLG | 酵母β-葡聚糖酶检测试剂盒 | 用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖 |
K-ETSULPH | 总亚硫酸检测试剂盒 | 测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法 |
K-FRGLMQ | D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒 | 适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。 |
K-FRUC | 果聚糖检测试剂盒 | 含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。 |
K-FRUGL | D-果糖/D-葡萄糖检测试剂盒 | 对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。 |
K-GALM | 半乳甘露聚糖检测试剂盒 | 食品和植物产品中半乳甘露聚糖的含量检测 |
K-GLUC | D-葡萄糖[GOPOD]检测试剂盒 | 谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。 |
K-GLUHK | D-葡萄糖[HK]检测试剂盒 | 植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。 |
K-GLUM | 葡甘聚糖检测试剂盒 | 植物和食品中葡甘聚糖的含量测定。 |
K-INTDF | 总膳食纤维检测试剂盒 | 总膳食纤维特定检测和分析 |
K-LACGAR | 乳糖/D-半乳糖快速检测试剂盒 | 用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖 |
K-LACSU | 乳糖/蔗糖/D-葡萄糖检测试剂盒 | 混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定 |
K-LACTUL | 乳果糖检测试剂盒 | 特异性、快速和灵敏测量奶基样品中乳果糖含量 |
K-MANGL | D-甘露糖/D-果糖/D-葡萄糖检测试剂盒 | 适合测定植物产品和多糖酸性水解产物中D-甘露糖含量 |
K-MASUG | 麦芽糖/蔗糖/D-葡萄糖检测试剂盒 | 在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测 |
K-PECID | 胶质识别检测试剂盒 | 食品配料中果胶的鉴别 |
K-PHYT | 植酸(总磷)检测试剂盒 | 食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析 |
K-PYRUV | 丙酮酸检测试剂盒 | 在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析 |
K-RAFGA | 棉子糖/D-半乳糖检测试剂盒 | 快速测量植物材料和食品中棉子糖和半乳糖含量 |
K-RAFGL | 棉子糖/蔗糖/D-半乳糖检测试剂盒 | 分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定 |
K-SDAM | 淀粉损伤检测试剂盒 | 谷物面粉中淀粉损伤的检测和分析 |
K-SUCGL | 蔗糖/D-葡萄糖检测试剂盒 | 饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析 |
K-SUFRG | 蔗糖/D-果糖/D-葡萄糖检测试剂盒 | 适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定 |
K-TDFR | 总膳食纤维检测试剂盒 | 总膳食纤维检测 |
K-TREH | 海藻糖检测试剂盒 | 快速、可靠地检测食品、饮料和其它物料中海藻糖含量 |
K-URAMR | 尿素/氨快速检测试剂盒 | 适用于水、饮料、乳制品和食品中尿素和氨的快速测定 |
K-URONIC | D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒 | 简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸) |
K-XYLOSE | D-木糖检测试剂盒 | 简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量 |
K-YBGL | Beta葡聚糖[酵母和蘑菇]检测试剂盒 | 检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量 |
新品排行榜
1
Megazyme/Amyloglucosidase (Asper...
2
Megazyme/α-Amylase (Bacill...
3
Megazyme/Arabinoxylan (Wheat Flo...
4
Megazyme/D-Xylose Assay Kit/K-XY...
5
Megazyme/MegaQuant Colorimeter T...
6
Megazyme/Wheat Arabinoxylan (enz...
7
Megazyme/Cellazyme C Tablets/T-C...
8
Megazyme/Amyloglucosidase (Asper...
9
Megazyme/Amylazyme HY Tablets/T-...
10
Megazyme/CM-Pachyman/P-CMPAC/4 g...
文章排行榜
1
Megazyme/Total Starch Assay Kit (AA/AMG) /K-TSTA-100A/100 assays
2
膳食纤维总量检测试剂盒
3
K-TSTA,淀粉总量检测试剂盒,Total Starch (AA/AMG) Assay Kit
4
Megazyme/Phytic Acid (Total Phosphorus) Assay Kit/K-PHYT/50 assays per kit
5
Megazyme/Protease (Subtilisin A from Bacillus licheniformis)/E-BSPRT-10ML/0.5 grams - 10ML
6
Megazyme/AZCL-Pachyman/I-AZPAC/3 grams
7
Megazyme/AZCL-Curdlan (fine)/I-AZCURF/3 grams
8
Megazyme/Total Dietary Fiber Controls/K-TDFC/Sufficient for 6 Controls
9
Bit_试剂_Equl意果_易扩_AdvancedBioMatrix_DivBio_Drummond_Genie_Glascol_Megazyme_Phadebas_Worthington
10
Harlan Bioproducts_试剂_Equl意果_易扩_AdvancedBioMatrix_DivBio_Drummond_Genie_Glascol_Megazyme_Phadebas_Worthington