产品说明
TheLactuloseAssayKitissuitablefor thespecific,rapidandsensitivemeasurementandanalysisoflactuloseinmilkandmilk-basedsamples.ReagentsincludedinthiskitmayalsobepreparedforuseintheproceduredescribedbyISOMethod11285:2004.Invitroandinvivoprotectiveeffectsoffermentedpreparationsofdietaryherbsagainstlipopolysaccharideinsult.Bose,S.,Song,M.Y.,Nam,J.K.,Lee,M.J.&Kim,H.(2012).FoodChemistry,134(2),758-765.LinktoArticleReadAbstractLipopolysaccharide(LPS)isknowntoproduceendotoxicshockbytriggeringsystemicinflammatoryresponses.Here,weevaluatedtheprotectiveeffectsofthreefermented/re-fermentedherbs,RhizomaAtractylodisMacrocephalae,MassaMedicataFermentata,andDolichorisSemen,inanLPS-mediatedinflammatoryinsult,eitherindividuallyinvitrousingRAW264.7cellsorincombinationininvivousingrats.Ingeneral,eachofthefermentedherbsshowedappreciableinvitroanti-inflammatoryactivity,althoughthedegreeofthisactivityvariedwiththeherbused.Moreover,amixtureoffermentedherbalextractsincombinationwithprobioticssignificantlyattenuatedthebloodendotoxinandCRPlevels,aswellasthegutpermeABIlity,andsignificantlyaugmentedtheintestinalLactobacillusspp.colonisationinLPS-treatedrats.However,theseeffectswerenotobservedfollowingtheadmiNISTrationofthecorrespondingmixtureofunfermentedherbalextracts.Thus,ourresultshighlightthebeneficialimpactsoftheuseoffermentedherbproductswithprobioticstocombatLPS-mediatedinflammatoryinsults.Theeffectofintestinalpermeabilityandendotoxemiaontheprognosisofacutepancreatitis.Koh,Y.Y.,Jeon,W.K.,Cho,Y.K.,Kim,H.J.,Chung,W.G.,Chon,C.U.,Oh,T.Y.&Shin,J.H.(2012).GutandLiver,6(4),505-511.LinktoArticleReadAbstractBackground/Aims:Earlyintestinalmucosaldamageplaysanimportantroleinsevereacutepancreatitis(AP).Previousstudieshaveshownthatintestinalpermeability(IP),serumendotoxinandcytokinescontributetotheearlyintestinalbarrierdysfunctioninAP.ThisstudyexploredthepredictivecapacityofIP,endotoxemiaandcytokinesasprognosticindicatorsinAPpatients.Methods:Eighty-sevenAPpatientswereincludedinthestudy.ThepatientswereclassifiedintothreegroupsaccordingtotheBalthazarcomputedtomographyseverityindex(CTSI).Wecomparedthebiochemicalparameters,includingIP,serumendotoxinlevelandcytokinelevelamongthethreegroups.TheassociationsofIPwithserumendotoxin,cytokines,CTSI,andotherwidelyusedbiochemicalparametersandscoringsystemswerealsoexamined.Results:IP,serumendotoxin,interleukin(IL-6)andtumornecrosisfactor(TNF)-αhadapositivecorrelationwiththeCTSIofAP.Endotoxin,IL-6,TNF-α,CTSI,theRanson/APACHEIIscore,thedurationofhospitalstay,complicationsanddeathsignificantlyaffectIPintheAPpatients.Conclusions:WebelievethatIPwithsubsidiarymeasurementsofserumendotoxin,IL-6andTNF-αmaybereliableMarkersforpredictingtheprognosisofAP.FurtherstudiesthatcanrestoreandpreservegutbarrierfunctioninAPpatientsarewarranted.Assessmentofgastrointestinalpermeabilitybylactulosetestinsheepafterrepeatedindomethacintreatment.Minuti,A.,Ahmed,S.,Trevisi,E.,Piccioli-Cappelli,F.,Bertoni,G.&Bani,P.(2013).JournalofAnimalScience,91(12),5646-5653.LinktoArticleReadAbstractTheaimofthestudywastoassessthesmallintestinepermeabilitybyusinglactuloseasasugarprobeandbloodmetabolitesinsheepafterachallengewithrepeatedindomethacininjections.Accordingtoachangeoverdesign,7adultsheep(4malesand3females)weresubjectedto4intramuscularinjections(every12h)ofsaline[control(CRT);7animals]orindomethacin(INDO;7animals).Twohoursafterthelastinjection,30goflactulosewereadministeredorallytobothCTRandINDO.Bloodsampleswerecollecteddailyfortheanalysisofthemetabolicprofileand5sampleswerecollectedat2-hintervalsfollowinglactuloseingestiontomonitorchangesinbloodlevelsoflactuloseasanindexofintestinalpermeability.TheINDOchallengeinducedclinicalsymptomssuchaslackofappetite,dullness,weakness,depression,anddiarrheawithtracesofbloodinthefeces.InINDOgroup,haptoglobinandceruloplasminincreased(PPPPPPPEvaluationoftheinvitroandinvivoprotectiveeffectsofunfermentedandfermentedRhizomacoptidisformulationsagainstlipopolysaccharideinsult.Bose,S.,Jeon,S.,Eom,T.,Song,M.Y.&Kim,H.(2012).FoodChemistry,135(2),452-459.LinktoArticleReadAbstractLipopolysaccharide(LPS)canproduceendotoxicshockbytriggeringthesystemicinflammatoryresponse.Here,weevaluatedtheinvitroandinvivoprotectiveeffectsofunfermentedandfermentedRhizomacoptidis(RCandFRC,respectively)againstLPS-insult.Ingeneral,RCsuppressedtheLPS-inducedexpressionofkeyinflammatorymediatorsinRAW264.7cells,inadose-dependentmanner.Notably,FRCata20μg/mldoseincombinationwiththeprobioticusedforfermentationshowedmorepotentinvitroanti-inflammatoryactivitiesthanthatexhibitedbythecorrespondingdoseofRC.Moreover,oraltreatmentwithFRCinassociationwiththeprobiotic,butnotoraladministrationofRC,significantlyattenuatedbloodendotoxinandC-reactiveprotein(CRP)levels,andgutpermeability,andsignificantlyaugmentedtheintestinalpopulationofBifodobacteriumspp.andLactobacillusspp.inLPS-treatedanimals.OurresultsdemonstratethebeneficialimpactoffermentedRCincombinationwiththeassociatedprobioticincombatingLPS-insultbothinvitroandinvivo.Theeffectsofco-administrationofprobioticswithherbalmedicineonobesity,metabolicendotoxemiaanddySBIosis:Arandomizeddouble-blindcontrolledclinicaltrial.Lee,S.J.,Bose,S.,Seo,J.G.,Chung,W.S.,Lim,C.Y.&Kim,H.(2013).ClinicalNutrition,33(6),973-981.LinktoArticleReadAbstractBackgrounds&aims:Probioticshelpmaintainbalanceincompositionofthegutmicrobiota,andhavebeenconsideredasapotentialtreatmentforobesity.Thisstudywasconductedinordertoassesstheeffectsofprobioticswhencombinedwithherbalmedicineintreatmentofobesity.Probioticsweretestedfortheabilitytomodulategutmicrobiota,gutpermeability,andendotoxinlevel,whichmayhavecorrelationwithfactorsinvolvedinobesity.Methods:Arandomized,double-blind,placebocontrolledstudywasconducted,inwhichpatientswithhigherBMI(>25kg/m2)andwaistcircumference(>85cm)wereenrolledandrandomlyassignedtoreceiveBofutsushosanwitheitherprobioticsorplacebocapsulesforaperiodofeightweeks.Assessmentofbodycompositionparameters,metabolicbiomarkers,endotoxinlevel,gutpermeability,andfecalbacteriainstoolwasperformedatbaselineandatweek8.ThestudywasregisteredattheClinicalResearchInformationService,approvedbytheKoreaNationalInstituteofHealth(KCT0000386).Results:Althoughbothgroupsshowedasignificantreductioninweightandwaistcircumference(p=0.000),nosignificantdifferencesinbodycompositionandmetabolicmarkerswereobserved.Incorrelationanalysis,changeinbodycompositionshowedpositivecorrelationwithendotoxinlevel(r=0.441,pr=0.350,pLactobacillusplantarum(r=0.425,pr=0.407,pr=0.359,and0.393,fortheformerandlaterparameters,respectively,pBifidobacteriumbrevepopulationshowednegativecorrelationwithendotoxinlevel(r=−0.350,pConclusions:Correlationsbetweengutmicrobiotaandchangeinbodycompositionindicatethatprobioticsmayinfluenceenergymetabolisminobesity.Correlationbetweenendotoxinlevelandweightreductionindicatesthatprobioticsmayplayanimportantroleinpreventionofendotoxinproduction,whichcanleadtogutmicrobiotadysbiosisassociatedwithobesity.FlosLoniceraAmelioratesObesityandAssociatedEndotoxemiainRatsthroughModulationofGutPermeabilityandIntestinalMicrobiota.Wang,J.H.,Bose,S.,Kim,G.C.,Hong,S.U.,Kim,J.H.,Kim,J.E.&Kim,H.(2014).PloSone,9(1),e86117.LinktoArticleReadAbstractBackgroundandAims:Increasingevidencehasindicatedacloseassociationofhost-gutflorametabolicinteractionwithobesity.FlosLonicera,atrADItionalherbalmedicine,isusedwidelyineasternAsiaforthetreatmentofvariousdisorders.TheaimofthisstudywastoevaluatewhetherunfermentedorfermentedformulationsofFlosLoniceracouldexertabeneficialimpacttocombatobesityandrelatedmetabolicendotoxemia.Methods:Obesityandmetabolicendotoxemiawereinducedseparatelyortogetherinratsthroughfeedingaeight-weekhighfatdieteitheralone(HFDcontrolgroup)orincombinationwithasingleLPSstimulation(intraperitonealinjection,0.75mg/kg)(LPScontrolgroup).While,themechanismofactionoftheLoniceraformulationswasexploredinvitrousingRAW264.7andHCT116celllinesasmodels.Results:Incell-basedstudies,treatmentwithbothunfermentedFlosLonicera(UFL)andfermentedFlosLonicera(FFL)formulationsresultedinsuppressionofLPS-inducedNOproductionandgeneexpressionofvitalproinflammatorycytokines(TNF-α,COX-2,andIL-6)inRAW264.7cells,reducedthegeneexpressionofzonulaoccludens(ZO)-1andclaudin-1,andnormalizedtransepithelialelectricresistance(TEER)andhorseradishperoxidase(HRP)fluxinLPS-treatedHCT-116cells.Inananimalstudy,treatmentofHFDaswellasHFD+LPSgroupswithUFLorFFLresultedinanotabledecreaseinbodyandadiposetissueweights,amelioratedtotalcholesterol,HDL,triglyceride,aspartatetransaminaseandendotoxinlevelsinserum,reducedtheurinarylactulose/mannitolratio,andmarkedlyalleviatedlipidaccumulationinliver.Inaddition,exposureofHFDaswellasHFD+LPSgroupswithUFLorFFLresultedinsignificantalterationofthedistributionofintestinalflora,especiallyaffectingthepopulationofAkkermansiaspp.andratioofBacteroidetesandFirmicutes.Conclusion:ThisevidencecollectivelydemonstratesthatFlosLoniceraamelioratesobesityandrelatedmetabolicendotoxemiaviaregulatingdistributionofgutfloraandgutpermeability.HepatoprotectiveeffectofLentinusedodesmyceliafermentedformulationagainstalcoholicliverinjuryinrats.Chung,W.S.,Wang,J.H.,Bose,S.,Park,J.M.,Park,S.O.,Lee,S.J.,Jeon,S.&Kim,H.(2015).JournalofFoodBiochemistry,39(3),251-262.LinktoArticleReadAbstractThehepatoprotectiveeffectsoffermentedblackricebranextracts(FF1andFF2:blackricebranfermentedbyLentinusedodesderivedfrommyceliumsupplementedwithsoybeanor Hoveniadulcis)andtheirassociatedmechanismswereevaluated.Inaninvitroexperiment,FFscausedsignificantameliorationofthemetabolicfunctionofrathepatocytestreatedwith NH4Cl.Inaddition,administrationofFFstoratswithchronicliverinjuryinducedby12-weekcontinualalcoholconsumptionresultedinsignificantrestorationofbodyweightshrinkage,notableattenuationofexcessiveaspartateaminotransferase,alkalinephosphataseandendotoxininserum,malondialdehydeinliverandthelactulose/mannitolratioinurine.FurThermore,FF1orFF2alsocausedsignificantdownregulationofgeneexpressionofseveralcriticalinflammatorymediators(interleukin-6,tumornecrosisfactor-alpha,cyclooxygenase-2andinducIBLenitricoxidesynthase).HistopathologicalfindingsalsoindicatedthatFFsreducedinflammation,necrosisandfattyinfiltrationinlivertissue.Takentogether,FFsexerthepatoprotectiveeffectsthroughanti-inflammatoryandanti-lipidperoxidativepropertiesandregulationofintestinalpermeability.Evaluationoffurosine,lactuloseandacid-solubleβ-lactoglobulinastimetemperatureintegratorsforwhippingcreamsamplesatretailinAustria.Boitz,L.I.&Mayer,H.K.(2015).InternationalDairyJournal,50,24-31.LinktoArticleReadAbstractThreeheatloadindicators,i.e.,furosine,lactuloseandacid-solubleβ-lactoglobulin,weredeterminedinwhippingcreamsamplespurchasedfromAustrianmarket(n = 33),aswellascommercialsamplesobtaineddirectlyfromoneAustriandairycompany(onebrand,n= 25).Furosinecontentswere47.8 ± 14.0,72.2 ± 36.6,and172.5 ± 17.7 mg 100 g−1protein,andβ-lactoglobulincontentswere143 ± 91,195 ± 150,and89 ± 31 mg L−1forretailedpasteurised,extendedshelflife(ESL),andultra-hightemperature(UHT)creamsamples,respectively.Lactuloseconcentrations(analysedenzymatically)were29 ± 10,56 ± 41,and201 ± 24 mg L−1forpasteurised,ESLandUHTcreamsamples,respectively.Linearcorrelationobtainedforfurosineandlactuloseconcentrationsindicatedthattheseindicatorscanreliablyassesstheheatloadofpasteurised,ESLandUHTcreamsamples,whereasβ-lactoglobulinwasdefinitelynotappropriatetodiscriminatebetweentheseheatingcategories.UV-methodforthedeterminationofLactuloseinmilkandfoodstuffscontainingdairyproductsPrinciple: (β-galactosidase)(1)Lactulose+H2O→D-galactose+D-fructose (glucoseoxidase+catalase+H2O2)(2)D-Glucose+H2O+O2→D-gluconicacid+H2O2 (hexokinase)(3)D-Fructose+ATP→F-6-P+ADP (phosphoglucoseisomerase)(4)F-6-P → G-6-P (glucose-6-phosphatedehydrogenase)(5)G-6-P+NADP+→gluconate-6-phosphate+NADPH+H+ (gluconate-6-phosphatedehydrogenase)(6)Gluconate-6-phosphate+NADP+→ribulose-5-phosphate+NADPH +CO2+H+Kitsize: 50assaysMethod: Spectrophotometricat340nmReactiontime: ~120minDetectionlimit: 4.8mg/LApplicationexamples:Milk,dairyproductsandfoodscontainingmilkMethodrecognition: NovelmethodAdvantagesTwicethesensitivityoftraditionalhexokinasebasedlactulosemethods Verycosteffective Allreagentsstablefor>2yearsafterpreparation Mega-Calc™softwaretoolisavailablefromourwebsiteforhassle-freerawdataprocessing Standardincluded
Megazyme品牌产品简介

Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
Megazyme的主要产品线包括:

◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号 | 中文品名 | 用途 |
K-ACETAF | 乙酸[AF法]检测试剂盒 | 酶法定量分析乙酸最广泛使用的方法 |
K-ACHDF | 可吸收糖/膳食纤维检测试剂盒 | 酒精沉淀法测定膳食纤维 |
K-AMIAR | 氨快速检测试剂盒 | 用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。 |
K-AMYL | 直链淀粉/支链淀粉检测试剂盒 | 谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测 |
K-ARAB | 阿拉伯聚糖检测试剂盒 | 果汁浓缩液中阿拉伯聚糖的检测 |
K-ASNAM | L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒 | 用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析 |
K-ASPTM | 阿斯巴甜检测试剂盒 | 专业用于测定饮料和食品中阿斯巴甜含量,操作简单 |
K-BETA3 | β-淀粉酶检测试剂盒 | 适用于麦芽粉中β-淀粉酶的测定 |
K-BGLU | 混合键β-葡聚糖检测试剂盒 | 测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量 |
K-CERA | α-淀粉酶检测试剂盒 | 谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定 |
K-CITR | 柠檬酸检测试剂盒 | 快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量 |
K-DLATE | 乳酸快速检测试剂盒 | 快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量 |
K-EBHLG | 酵母β-葡聚糖酶检测试剂盒 | 用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖 |
K-ETSULPH | 总亚硫酸检测试剂盒 | 测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法 |
K-FRGLMQ | D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒 | 适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。 |
K-FRUC | 果聚糖检测试剂盒 | 含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。 |
K-FRUGL | D-果糖/D-葡萄糖检测试剂盒 | 对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。 |
K-GALM | 半乳甘露聚糖检测试剂盒 | 食品和植物产品中半乳甘露聚糖的含量检测 |
K-GLUC | D-葡萄糖[GOPOD]检测试剂盒 | 谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。 |
K-GLUHK | D-葡萄糖[HK]检测试剂盒 | 植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。 |
K-GLUM | 葡甘聚糖检测试剂盒 | 植物和食品中葡甘聚糖的含量测定。 |
K-INTDF | 总膳食纤维检测试剂盒 | 总膳食纤维特定检测和分析 |
K-LACGAR | 乳糖/D-半乳糖快速检测试剂盒 | 用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖 |
K-LACSU | 乳糖/蔗糖/D-葡萄糖检测试剂盒 | 混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定 |
K-LACTUL | 乳果糖检测试剂盒 | 特异性、快速和灵敏测量奶基样品中乳果糖含量 |
K-MANGL | D-甘露糖/D-果糖/D-葡萄糖检测试剂盒 | 适合测定植物产品和多糖酸性水解产物中D-甘露糖含量 |
K-MASUG | 麦芽糖/蔗糖/D-葡萄糖检测试剂盒 | 在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测 |
K-PECID | 胶质识别检测试剂盒 | 食品配料中果胶的鉴别 |
K-PHYT | 植酸(总磷)检测试剂盒 | 食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析 |
K-PYRUV | 丙酮酸检测试剂盒 | 在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析 |
K-RAFGA | 棉子糖/D-半乳糖检测试剂盒 | 快速测量植物材料和食品中棉子糖和半乳糖含量 |
K-RAFGL | 棉子糖/蔗糖/D-半乳糖检测试剂盒 | 分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定 |
K-SDAM | 淀粉损伤检测试剂盒 | 谷物面粉中淀粉损伤的检测和分析 |
K-SUCGL | 蔗糖/D-葡萄糖检测试剂盒 | 饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析 |
K-SUFRG | 蔗糖/D-果糖/D-葡萄糖检测试剂盒 | 适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定 |
K-TDFR | 总膳食纤维检测试剂盒 | 总膳食纤维检测 |
K-TREH | 海藻糖检测试剂盒 | 快速、可靠地检测食品、饮料和其它物料中海藻糖含量 |
K-URAMR | 尿素/氨快速检测试剂盒 | 适用于水、饮料、乳制品和食品中尿素和氨的快速测定 |
K-URONIC | D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒 | 简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸) |
K-XYLOSE | D-木糖检测试剂盒 | 简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量 |
K-YBGL | Beta葡聚糖[酵母和蘑菇]检测试剂盒 | 检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量 |
新品排行榜
1
Megazyme/Amyloglucosidase (Asper...
2
Megazyme/α-Amylase (Bacill...
3
Megazyme/Arabinoxylan (Wheat Flo...
4
Megazyme/D-Xylose Assay Kit/K-XY...
5
Megazyme/MegaQuant Colorimeter T...
6
Megazyme/Wheat Arabinoxylan (enz...
7
Megazyme/Cellazyme C Tablets/T-C...
8
Megazyme/Amyloglucosidase (Asper...
9
Megazyme/Amylazyme HY Tablets/T-...
10
Megazyme/CM-Pachyman/P-CMPAC/4 g...
文章排行榜
1
Megazyme/Total Starch Assay Kit (AA/AMG) /K-TSTA-100A/100 assays
2
膳食纤维总量检测试剂盒
3
K-TSTA,淀粉总量检测试剂盒,Total Starch (AA/AMG) Assay Kit
4
Megazyme/Phytic Acid (Total Phosphorus) Assay Kit/K-PHYT/50 assays per kit
5
Megazyme/Protease (Subtilisin A from Bacillus licheniformis)/E-BSPRT-10ML/0.5 grams - 10ML
6
Megazyme/AZCL-Pachyman/I-AZPAC/3 grams
7
Megazyme/AZCL-Curdlan (fine)/I-AZCURF/3 grams
8
Megazyme/Total Dietary Fiber Controls/K-TDFC/Sufficient for 6 Controls
9
Bit_试剂_Equl意果_易扩_AdvancedBioMatrix_DivBio_Drummond_Genie_Glascol_Megazyme_Phadebas_Worthington
10
Harlan Bioproducts_试剂_Equl意果_易扩_AdvancedBioMatrix_DivBio_Drummond_Genie_Glascol_Megazyme_Phadebas_Worthington