产品说明
TheD-Mannose/D-Fructose/D-GlucosetestkitissuitableforthespecificmeasurementandanalysisofD-mannose,D-fructoseandD-glucoseinplantproductsandinacidhydrolysatesofpolysaccharides.Alteredphysiologyandbiochemistryofimportedlitchifruitheldunderdifferentvaporpressuredeficits.Somboonkaew,N.&Terry,L.A.(2010).JournalofAgriculturalandFoodChemistry,58(10),6209-6218.LinktoArticleReadAbstractTheeffectsofvaporpressuredeficit(VPD)onlitchifruitqualityhavenotyetbeenfullydefined.Theaimofthisstudywastodetailthechangesinphysiology,sugars,organicacids,andindividualanthocyaninconcentrationsinimportedlitchifruitheldatvariouscontrolledrelativehumidity(RH)andVPDlevels.SO2-fumigated(butnotacid-treated)litchiimportedfromThailand(cv.Kom)andfromIsrael(cv.Mauritius)wereairfreightedtotheUnitedKingdomandthenstoredfor9daysateither5or13°Ctosimulateshelf-lifeconditions.FruitswerestoredunderaseriesofcontrolledRHconditionsforthedurationofthetrialusingdifferentconcentrationsofglycerolindeonizedwater.Respirationratesandweightlossesofbothfruitlotsweregreaterinlitchistoredat13°CandaVPDof0.274kPa.At5°CandaVPDof0or0.042kPa,sugarsandorganicacidsinarilandpericarptissueandindividualanthocyaninsinpericarpwerebettermaintained.ThisisthefirstpieceofworkthathassystematicallyevaluatedtheeffectofaseriesofVPDsonlitchifruitbiochemistrysuchthatimplicationsfordesigningsystemstobettermaintainthephysiologicalqualityofimportedlitchifruitarediscussed.AnewbacterialhydrolasespecificforthecompatIBLesolutesα-D-mannopyranosyl-(1→2)-D-glycerateandα-D-glucopyranosyl-(1→2)-D-glycerate.Alarico,S.,EmpADInhas,N.&daCosta,M.S.(2013).EnzymeandMicrobialTechnology,52(2),77-83.LinktoArticleReadAbstractTheaccumulationpatternsandbiosynthesisofcompatiblesolutesinhyper/Thermophileshavebeenextensivelystudied.However,thereislittleinformationavailableontheirhydrolysis,leadingustosearchforenzymesforthisactivity.Fromtheanalysisofthegenomesofseveralmicroorganismsknowntoaccumulateα-D-mannopyranosyl-(1→2)-D-glycerate(mannosylglycerate,MG)orα-D-glucopyranosyl-(1→2)-D-glycerate(glucosylglycerate,GG)wewereabletoidentifyalikelycandidategeneforthehydrolysisofthesemolecules.TheThermusthermophilusHB27homologueencodedaputativeenzymewithmotifsoftheGH63andGH37familiesofglycosidehydrolases.WeexpressedthegenefromthisthermophilicbacteriumandfromRubrobacterradiotolerans,andconfirmedthattherecombinantenzymes,heredesignatedmannosylglyceratehydrolase(MgH),specificallyhydrolysedMG(orGG)tomannose(orglucose)andglycerate.Bothenzymeswerehighlystableandmaximallyactiveattemperaturesclosetoeachorganisms’optimalgrowthtemperatures(half-livesof15.4±0.5hat55°Cand16.1±0.4hat70°C)butatlowpH(4.0–4.5).CationswerenotrequiredfortheiractivityandeachenzymeexhibitedMichaelis–Mentenkineticsat50°Cand70°C,respectively,withcomparablecatalyticefficienciestowardsMGandGG.Herein,wepurifiedandcharacterizedanovelandhighlyspecificMG-andGG-hydrolyzingenzymethatrepresentanattractivetoolfordevelopmentofenzymaticassaysforquantificationofthesesolutes,whichseemtobemoreprevalentinmicroorganismsthaninitiallysUSPected.ThemolecularcharacterizationofanovelGH38α-mannosidasefromthecrenarchaeonSulfolobussolfataricusrevealeditsABIlityinde-mannosylatingglycoproteins.Cobucci-Ponzano,B.,Conte,F.,Strazzulli,A.,Capasso,C.,Fiume,I.,Pocsfalvi,G.,Rossi,M.&Moracci,M.(2010).Biochimie,92(12),1895-1907.LinktoArticleReadAbstractα-Mannosidases,importantenzymesintheN-glycanprocessinganddegradationinEukaryotes,arefrequentlyfoundinthegenomeofBacteriaandArchaeainwhichtheirfunctionisstilllargelyunknown.Theα-mannosidasefromthehyperthermophilicCrenarchaeonSulfolobussolfataricushasbeenidentifiedandpurifiedfromcellularextractsanditsgenehasbeenclonedandexpressedinEscherichiacoli.Thegene,belongingtoretainingGH38mannosidasesofthecarbohydrateactiveenzymeclassification,isabundantlyexpressedinthisArchaeon.Thepurifiedα-mannosidaseactivitydependsonasingleZn2+ionpersubunitisinhibitedbyswainsoninewithanIC50of0.2mM.Themolecularcharacterizationofthenativeandrecombinantenzyme,namedSsα-man,showedthatitishighlyspecificforα-mannosidesandα(1,2),α(1,3),andα(1,6)-D-mannobioses.Inaddition,theenzymeisabletodemannosylateMan3GlcNAc2andMan7GlcNAc2oligosaccharidescommonlyfoundinN-glycosylatedproteins.Moreinterestingly,Ssα-manremovesmannoseresiduesfromtheglycosidicmoietyofthebovinepancreaticribonucleaseB,suggestingthatitcouldprocessmannosylatedproteinsalsoinvivo.Thisisthefirstevidencethatarchaealglycosidasesareinvolvedinthedirectmodificationofglycoproteins.TheplantSelaginellamoellendorffiipossessesenzymesforsynthesisandhydrolysisofthecompatiblesolutesmannosylglycerateandglucosylglycerate.Nobre,A.,Empadinhas,N.,Nobre,M.F.,Lourenço,E.C.,Maycock,C.,Ventura,M.R.,MingoteA.&daCosta,M.S.(2013).Planta,237(3),891-901.LinktoArticleReadAbstractAmannosylglyceratesynthase(MgS)genedetectedinthegenomeofSelaginellamoellendorffiiwasexpressedinE.coliandtherecombinantenzymewaspurifiedandcharacterized.Aremarkableandunprecedentedfeatureofthisenzymewastheabilitytoefficientlysynthesizemannosylglycerate(MG)andglucosylglycerate(GG)alike,withmaximalactivityat50°C,pH8.0andwithMg2+asreactionenhancer.Wehavealsoidentifiedanovelglycosidehydrolasegeneinthisplant’sgenome,whichwasfunctionallyconfirmedtobehighlyspecificforthehydrolysisofMGandGGandnamedMGhydrolase(MgH),duetoitshomologywithbacterialMgHs.Therecombinantenzymewasmaximallyactiveat40°CandatpH6.0–6.5.Theactivitywasindependentofcations,butMn2+wasastrongstimulator.RegardlessoftheseefficientenzymaticresourceswecouldnotdetectMGorGGinS.moellendorffiiorintheextractsoffiveadditionalSelaginellaspecies.Herein,wedescribethepropertiesofthefirsteukaryoticenzymesforthesynthesisandhydrolysisofthecompatiblesolutes,MGandGG.Celllysisinducedbymembrane-damagingdetergentsaponinsfromQuillajasaponaria.Berlowska,J.,Dudkiewicz,M.,Kregiel,D.,Czyzowska,A.&Witonska,I.(2015).EnzymeandMicrobialTechnology,75,44-48.LinktoArticleReadAbstractThispaperpresentstheresultsofastudytodeterminetheeffectofQuillajasaponariasaponinsonthelysisofindustrialyeaststrains.CelllysisinducedbysaponinfromQ.saponariacombinedwiththeplasmolysingeffectof5%NaClforSaccharomycescerevisiae,Kluyveromycesmarxianusyeastsbiomasswasconductedat50°Cfor24–48 h.Membranepermeabilityandintegrityoftheyeastcellsweremonitoredusingfluorescenttechniquesandconcentrationsofproteins,freeaminonitrogen(FAN)andfreeaminoacidsinresultinglysateswereanalyzed.Proteinreleasewassignificantlyhigherinthecaseofyeastcelllysispromotedwith0.008%Q.saponariaand5%NaClincomparisontoplasmolysistriggeredbyNaClonly.Strategicoptimizationofxylanase–mannanasecombi-CLEAsforsynergisticandefficienthydrolysisofcomplexlignocellulosicsubstrates.Bhattacharya,A.&Pletschke,B.I.(2015).JournalofMolecularCatalysisB:Enzymatic,115,140-150.LinktoArticleReadAbstractCost-effectiveapplicationoflignocellulolyticenzymesholdsthekeytowardscommercializationofenzymatichydrolysisoflignocellulosicbiomass.Carrierfreeimmobilizationofenzyme(s)offersalucrativeProspect.Combined-crosslinkedenzymeaggregates(combi-CLEAs)areanovelprospectiveandthispresentstudyaddressesthepreparation,characterizationandapplicationofxylanase–mannanasecombi-CLEASonlime-preteatedsugarcanebagasseandmilledcornstover.X6-CLEAs,X7-CLEAs,L1-CLEAsandL7-CLEAswerepreparedafterelaborativeoptimizationoftheprecipitatingagentandglutaraldehydeconcentration.Thehighestactivityafterprecipitationwasobservedwithacetonebutfollowingcross-linkingwithglutaraldehydelessthan60%activitywasretained,whilemorethan60%activitywasretainedafterprecipitationwithammoniumsulphateandcross-linkingwithglutaraldehyde.Accessoryenzymeactivitiesincludingα-arabinofuranosidase,β-xylosidase,esterases,β-mannosidase,α-galactosidaseandβ-glucosidasewerealsodetermined.Morethanan1.5foldincreaseinthermostabilitycomparedtothefreeenzymewasobservedoverabroadtemperaturerange(50–70°C).Tri-synergystudiesandquadsynergystudieswereusedtogeneratecombi-CLEAswithdifferentproteinratios.Hydrolysisoflimepre-treatedbagassewithcombi-CLEAsatproteinratioscorrespondingtoX6(33.0%):X7(17.0%):L1(17.0%):L7(33.0%)resultedina1.68foldhighersugarreleasecomparedtothequadsynergymodelusingfreeenzymes.Similarly,hydrolysisofcornstoverwithcombi-CLEAsatproteinratioscorrespondingtoX6(40.0%):X7(10.0%):L1(10.0%):L7(40.0%)resultedinan1.58foldhighersugarreleasecomparedtothesugarreleaseobservedwiththequadsynergymodelusingfreeenzymes.Monomericsugarsconstituted70–75%ofreducingsugarsreleasedduringhydrolysis.Theroleofaccessoryenzymesinimprovingenzymesynergywasclearlyshown.Theefficiencyofcombi-CLEAscomparedtofreeenzymesmakesthemidealcandidatesfortheprudentandcost-effectivecommercializationoflignocellulolyticenzymes.ABacteroideteslocusdedicatedtofungal1,6-β-glucandegradation:uniquesubstrateconformationdrivesspecificityofthekeyendo-1,6-β-glucanase.Temple,M.J.,Cuskin,F.,Baslé,A.,Hickey,N.,Speciale,G.,Williams,S.J.,Gilbert,H.J.&Lowe,E.C.(2017).JournalofBIOLOGicalChemistry,jbc-M117.LinktoArticleReadAbstractGlycansaremajornutrientsavailabletothehumangutmicrobiota(HGM).TheBacteroidesaregeneralistglycandegradersandthisfunctionismediatedlargelybypolysaccharideutilizationloci(PULs).ThegenomesofseveralBacteroidesspeciescontainaPUL,PUL1,6-beta;-glucan,thatwaspredictedtotargetmixedlinkedplant1,3;1,4-beta-glucans.TotestthishypothesiswecharacterizedtheproteinsencodedbythislocusinBacteroidesthetaiotaomicron,amemberoftheHGM.WeshowherethatPUL1,6-β-glucandoesnotorchestratethedegradationofaplantpolysaccharidebuttargetsafungalcellwallglycan,1,6-beta-glucan,whichisagrowthsubstrateforthebacterium.Thelocusisupregulatedby1,6-beta-glucan,andencodestwoenzymes,asurfaceendo-1,6-beta-glucanase,BT3312,andaperiplasmicbeta-glucosidasethattargetsprimarily1,6-beta-glucans.Thenon-catalyticproteinsencodedbyPUL1,6-beta-glucantarget1,6-beta-glucansandcompriseasurfaceglycanbindingproteinandaSusDhomologuethatdeliversglycanstotheoutermembranetransporter.Weidentifiedthecentralroleoftheendo-1,6-beta-glucanasein1,6-beta-glucandepolymerizationbydeletingbt3312,whichpreventedthegrowthofB.thetaiotaomicronon1,6-beta-glucan.ThecrystalstructureofBT3312incomplexwithβ-glucosyl-1,6-deoxynojirimycin,revealedaTIMbarrelcatalyticdomainthatcontainsadeepsubstratebindingclefttailoredtoaccommodatethehook-likestructureadoptedby1,6-beta-glucan.Specificityisdrivenbythecomplementarityoftheenzymeactivesitecleftandtheconformationofthesubstrate.WealsonotedthatPUL1,6-beta-glucanissyntenictomanyPULsfromotherBacteroidetessuggestingthatutilizationofyeastandfungalcellwall1,6-beta-glucansisawidespreadadaptationwithinthehumanmicrobiota.Useofalmondshellasfoodingredient.Kacem,I.,Martinez-Saez,N.,Kallel,F.,Khawla,J.B.,Claire,H.B.,Semia,C.E.&delCastillo,M.D.(2017).EuropeanFoodResearchandTechnology,1-12.LinktoArticleReadAbstractAlmondshellisamajorwastefromthealmondprocessingindustry.Itsfeasibilityasnaturalsourceofhealth-promotingcomponentswasexamined.Theby-productwasfractionatedunderbasicconditionsfollowinganeasyscale-upprocess.Thechemicalcompositionoftherecoveredfractionanditsantioxidantandantidiabeticpropertieswereevaluated.Novelinformationregardingthechemicalcompositionofthepolysaccharideswasalsoobtained.Almondshellisformedbylignin-carbohydratecomplexespossessingantioxidantpropertiesandcapacitytoinhibitα-glucosidase.Accordingtoourknowledge,thisisthefirsttimeα-glucosidaseinhibitoryactivityofalignin-carbohydratecomplexisreported.Biscuitscontainingnon-caloricsweetenersoluble(2.5%)andinsoluble(5.6%)dietaryfiber,naturalantioxidants(1.34mgofgallicacidequivalents/g)andα-glucosidaseinhibitors(1gofbiscuit–1mgofacarbose)achievedahighsensorialscore(7.2outof9)whenalmondshellwasincorporatedtothem.Theapplicationofafractionfromalmondshellcontaininglignin-polysaccharidescomplexesasfoodingredientinbiscuitformulationsforpeoplewithparticularnutritionalrequirementsisfeasibleandnew.UV-methodforthedeterminationofD-Mannose,D-FructoseandD-Glucoseinfoodstuffs,yeastcellpreparationsandothermaterialsPrinciple: (hexokinase)(1)D-Mannose/D-fructose/D-glucose+ATP→ M-6-P/F-6-P/G-6-P+ADP (glucose-6-phosphatedehydrogenase)(2)G-6-P+NADP+→gluconate-6-phosphate+NADPH+H+ (phosphomannoseisomerase)(phosphoglucoseisomerase)(3) M-6-P ↔ F-6-P ↔ G-6-PKitsize: *55assays* Thenumberofmanualtestsperkitcanbedoubledifallvolumesarehalved. ThiscanbereadilyaccommodatedusingtheMegaQuantTM WaveSpectrophotometer(D-MQWAVE).Method: Spectrophotometricat340nmReactiontime: ~30minDetectionlimit: 0.7mg/LApplicationexamples:Foodstuffs,yeastcellpreparations,enzymatichydrolysatesandothermaterials(e.g.biologicalcultures,samples,etc.)Methodrecognition: NovelmethodAdvantagesVerycompetitiveprice(costpertest) Allreagentsstablefor>2yearsafterpreparation Onlyenzymatickitavailable Simpleformat Rapidreaction Mega-Calc™softwaretoolisavailablefromourwebsiteforhassle-freerawdataprocessing Standardincluded
Megazyme品牌产品简介

Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
Megazyme的主要产品线包括:

◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号 | 中文品名 | 用途 |
K-ACETAF | 乙酸[AF法]检测试剂盒 | 酶法定量分析乙酸最广泛使用的方法 |
K-ACHDF | 可吸收糖/膳食纤维检测试剂盒 | 酒精沉淀法测定膳食纤维 |
K-AMIAR | 氨快速检测试剂盒 | 用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。 |
K-AMYL | 直链淀粉/支链淀粉检测试剂盒 | 谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测 |
K-ARAB | 阿拉伯聚糖检测试剂盒 | 果汁浓缩液中阿拉伯聚糖的检测 |
K-ASNAM | L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒 | 用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析 |
K-ASPTM | 阿斯巴甜检测试剂盒 | 专业用于测定饮料和食品中阿斯巴甜含量,操作简单 |
K-BETA3 | β-淀粉酶检测试剂盒 | 适用于麦芽粉中β-淀粉酶的测定 |
K-BGLU | 混合键β-葡聚糖检测试剂盒 | 测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量 |
K-CERA | α-淀粉酶检测试剂盒 | 谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定 |
K-CITR | 柠檬酸检测试剂盒 | 快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量 |
K-DLATE | 乳酸快速检测试剂盒 | 快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量 |
K-EBHLG | 酵母β-葡聚糖酶检测试剂盒 | 用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖 |
K-ETSULPH | 总亚硫酸检测试剂盒 | 测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法 |
K-FRGLMQ | D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒 | 适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。 |
K-FRUC | 果聚糖检测试剂盒 | 含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。 |
K-FRUGL | D-果糖/D-葡萄糖检测试剂盒 | 对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。 |
K-GALM | 半乳甘露聚糖检测试剂盒 | 食品和植物产品中半乳甘露聚糖的含量检测 |
K-GLUC | D-葡萄糖[GOPOD]检测试剂盒 | 谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。 |
K-GLUHK | D-葡萄糖[HK]检测试剂盒 | 植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。 |
K-GLUM | 葡甘聚糖检测试剂盒 | 植物和食品中葡甘聚糖的含量测定。 |
K-INTDF | 总膳食纤维检测试剂盒 | 总膳食纤维特定检测和分析 |
K-LACGAR | 乳糖/D-半乳糖快速检测试剂盒 | 用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖 |
K-LACSU | 乳糖/蔗糖/D-葡萄糖检测试剂盒 | 混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定 |
K-LACTUL | 乳果糖检测试剂盒 | 特异性、快速和灵敏测量奶基样品中乳果糖含量 |
K-MANGL | D-甘露糖/D-果糖/D-葡萄糖检测试剂盒 | 适合测定植物产品和多糖酸性水解产物中D-甘露糖含量 |
K-MASUG | 麦芽糖/蔗糖/D-葡萄糖检测试剂盒 | 在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测 |
K-PECID | 胶质识别检测试剂盒 | 食品配料中果胶的鉴别 |
K-PHYT | 植酸(总磷)检测试剂盒 | 食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析 |
K-PYRUV | 丙酮酸检测试剂盒 | 在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析 |
K-RAFGA | 棉子糖/D-半乳糖检测试剂盒 | 快速测量植物材料和食品中棉子糖和半乳糖含量 |
K-RAFGL | 棉子糖/蔗糖/D-半乳糖检测试剂盒 | 分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定 |
K-SDAM | 淀粉损伤检测试剂盒 | 谷物面粉中淀粉损伤的检测和分析 |
K-SUCGL | 蔗糖/D-葡萄糖检测试剂盒 | 饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析 |
K-SUFRG | 蔗糖/D-果糖/D-葡萄糖检测试剂盒 | 适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定 |
K-TDFR | 总膳食纤维检测试剂盒 | 总膳食纤维检测 |
K-TREH | 海藻糖检测试剂盒 | 快速、可靠地检测食品、饮料和其它物料中海藻糖含量 |
K-URAMR | 尿素/氨快速检测试剂盒 | 适用于水、饮料、乳制品和食品中尿素和氨的快速测定 |
K-URONIC | D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒 | 简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸) |
K-XYLOSE | D-木糖检测试剂盒 | 简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量 |
K-YBGL | Beta葡聚糖[酵母和蘑菇]检测试剂盒 | 检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量 |
新品排行榜
1
Megazyme/Amyloglucosidase (Asper...
2
Megazyme/α-Amylase (Bacill...
3
Megazyme/Arabinoxylan (Wheat Flo...
4
Megazyme/D-Xylose Assay Kit/K-XY...
5
Megazyme/MegaQuant Colorimeter T...
6
Megazyme/Wheat Arabinoxylan (enz...
7
Megazyme/Cellazyme C Tablets/T-C...
8
Megazyme/Amyloglucosidase (Asper...
9
Megazyme/Amylazyme HY Tablets/T-...
10
Megazyme/CM-Pachyman/P-CMPAC/4 g...
文章排行榜
1
Megazyme/Total Starch Assay Kit (AA/AMG) /K-TSTA-100A/100 assays
2
膳食纤维总量检测试剂盒
3
K-TSTA,淀粉总量检测试剂盒,Total Starch (AA/AMG) Assay Kit
4
Megazyme/Phytic Acid (Total Phosphorus) Assay Kit/K-PHYT/50 assays per kit
5
Megazyme/Protease (Subtilisin A from Bacillus licheniformis)/E-BSPRT-10ML/0.5 grams - 10ML
6
Megazyme/AZCL-Pachyman/I-AZPAC/3 grams
7
Megazyme/AZCL-Curdlan (fine)/I-AZCURF/3 grams
8
Megazyme/Total Dietary Fiber Controls/K-TDFC/Sufficient for 6 Controls
9
Bit_试剂_Equl意果_易扩_AdvancedBioMatrix_DivBio_Drummond_Genie_Glascol_Megazyme_Phadebas_Worthington
10
Harlan Bioproducts_试剂_Equl意果_易扩_AdvancedBioMatrix_DivBio_Drummond_Genie_Glascol_Megazyme_Phadebas_Worthington