产品说明
TheRaffinose/Sucrose/D-GlucosetestkitisforthemeasurementandanalysisofD-glucose,sucroseandraffinose,stachyoseandverbascoseinseedsandseedmeals.BasedonthemeasurementofD-glucoseonenzymichydrolysisofraffinose,stachyoseandverbascosetoD-glucose,D-fructoseandD-galactose.Measurementoftotalstarchincerealproductsbyamyloglucosidase-alpha-amylasemethod:collaborativestudy.McCleary,B.V.,Gibson,T.S.&Mugford,D.C.(1997).JournalofAOACInternational,80,571-579.LinktoArticleReadAbstractAnAmericanAssociationofCerealChemists/AOACcollaborativestudywasconductedtoevaluatetheaccuracyandreliABIlityofanenzymeassaykitprocedureformeasurementoftotalstarchinarangeofcerealgrainsandproducts.Thefloursampleisincubatedat95degreesCwithThermostablealpha-amylasetocatalyzethehydrolysisofstarchtomaltodextrins,thepHoftheslurryisadjusted,andtheslurryistreatedwithahighlypurifiedamyloglucosidasetoquantitativelyhydrolyzethedextrinstoglucose.Glucoseismeasuredwithglucoseoxidase-peroxidasereagent.Thirty-twocollaboratorsweresent16homogeneoustestsamplesas8blindduplicates.Thesesamplesincludedchickenfeedpellets,whitebread,greenpeas,high-amylosemaizestarch,whitewheatflour,wheatstarch,oatbran,andspaghetti.Allsampleswereanalyzedbythestandardprocedureasdetailedabove;4samples(high-amylosemaizestarchandwheatstarch)werealsoanalyzedbyamethodthatrequiresthesamplestobecookedfirstindimethylsulfoxide(DMSO).Relativestandarddeviationsforrepeatability(RSD(r))rangedfrom2.1to3.9%,andrelativestandarddeviationsforreproducibility(RSD(R))rangedfrom2.9to5.7%.TheRSD(R)valueforhighamylosemaizestarchanalyzedbythestandard(non-DMSO)procedurewas5.7%;thevaluewasreducedto2.9%whentheDMSOprocedurewasused,andthedeterminedstarchvaluesincreasedfrom86.9to97.2%.Measurementofcarbohydratesingrain,feedandfood.McCleary,B.V.,Charnock,S.J.,Rossiter,P.C.,O’Shea,M.F.,Power,A.M.&Lloyd,R.M.(2006).JournaloftheScienceofFoodandAgriculture,86(11),1648-1661.LinktoArticleReadAbstractProceduresforthemeasurementofstarch,starchdamage(gelatinisedstarch),resistantstarchandtheamylose/amylopectincontentofstarch,β-glucan,fructan,glucomannanandgalactosyl-sucroseoligosaccharides(raffinose,stachyoseandverbascose)inplantmaterial,animalfeedsandfoodsaredescribed.Mostofthesemethodshavebeensuccessfullysubjectedtointerlaboratoryevaluation.AllmethodsarebasedontheuseofenzymeseitherpurifiedbyconventionalchromatographyorproducedusingmolecularBIOLOGytechniques.Suchmethodsallowspecific,accurateandreliablequantificationofaparticularcomponent.Problemsincalculatingtheactualweightofgalactosyl-sucroseoligosaccharidesintestsamplesarediscussedindetail.Highhydrostaticpressureinfluencesantinutritionalfactorsandinvitroproteindigestibilityofsplitpeasandwholewhitebeans.Linsberger-Martin,G.,Weiglhofer,K.,ThiPhuong,T.P.&Berghofer,E.(2013).LWT-FoodScienceandTechnology,51(1),331-336.LinktoArticleReadAbstractLegumesareofhighnutritionalvaluebutconsumptionislowinWesterncountriesduetolongprocessingandantinutritionalfactors.Thedevelopmentofconvenienceproductscanhelptoovercometheseconstraints.Thepresentstudyinvestigatedtheeffectofhighhydrostaticpressureonoligosaccharides,phyticacidandtotalphenolicacidcontent,trypsininhibitoractivityandproteindigestibilityinpeasandbeans.Oligosaccharidesweresignificantlyreducedthroughpressurisationbyupto68%inpeasand48%inbeansbutreductionwaslowerthanincookedsamples(max.82%inpeasand80%inbeans).Phyticacidwasreducedbyhighpressurebyupto36%inpeasand11%inbeans.Totalphenolicacidcontentwasreducedonlyinsomepressurisedpeasandbeansascomparedtountreatedpeasandbeans.Reductionofphyticacid(max.48%)andtotalphenolicacids(max.78%)throughcookingwasgreaterthanthroughpressurisation.Trypsininhibitoractivitydecreasedbyupto100%inpeasand84%inbeansduringpressurisation.Proteindigestibilityincreasedbyupto4.3%inpeaswhentreatedat600MPaand60°Cregardlessoftimeandby8.7%inbeanstreatedat600MPaat60°Cfor60min.Differencesinchemicalcompositionoffieldpea(Pisumsativum)cultivars:Effectsofcultivationareaandyear.Nikolopoulou,D.,Grigorakis,K.,Stasini,M.,Alexis,M.N.&IliADIs,K.(2007).FoodChemistry,103(3),847-852.LinktoArticleReadAbstractTheinfluenceofthemeteorologicalconditionsduringthecultivationyear,alongwiththesoilcharacteristicsofthecultivationarea,onnutrientandantinutrientcompositionswereevaluatedforthreefieldpea(Pisumsativum)cultivars.Allvarietieswerecultivatedinthreedifferentcultivationareasfortwosubsequentyears.Thelocationofthecultivationareasignificantlyaffectedtheproximatecomposition,sucrose,starchandnon-starchpolysaccharidecontents,aswellasthetotaltanninandphyticacidcontentsofpeas.Thecultivationyearalsoaffectedalltraitswiththeexceptionofstarch.Themajorconstituentsofthepeaseedsweresignificantlyaffectedbytheinteractionbetweenthecultivationareaandthecultivationyear.Theseresultsindicatethatthecompositionofpeasishighlydependentontheclimateconditions,aswellasonthesoilcharacteristicsofthecultivationareaduringthegrowingseason.Growth,feedutilization,healthandorganolepticcharacteristicsofEuropeanseabass(Dicentrarchuslabrax)fedextrudeddietsincludinglowandhighlevelsofthreedifferentlegumes.Adamidou,S.,Nengas,I.,Henry,M.,Grigorakis,K.,Rigos,G.,Nikolopoulou,D.,Kotzamanis,Y.,Bell,G.J.&Jauncey,K.(2009).Aquaculture,293(3-4),263-271.LinktoArticleReadAbstractThreelegumes[fieldpeas(P),chickpeas(CP)andfababeans(B)]wereevaluatedattwoinclusionlevels;170(L)and350gkg-1(H)ina14-weekexperimentwithtriplicategroupsof97.9±6.1gEuropeanseabass.Acontroldietincludedwheatmeal,fishmeal(FM)andamixtureofplantingredientsasproteinsources.Diets,processedinatwin-screwextruder,wereisonitrogenousandisoenergetic.Allexperimentaldietsimprovedgrowthcomparedtothecontrol.Weightgain,feedintake,FCRandSGRwereimprovedforfishfeddietCPL,whilefishfeddietCPHgavehigherFCR.Proteinandstarchdigestibilitywerehighestforthecontroldiet,whilefishfeddietsCPLandPLshowedsignificantlylowerproteinADCsandlowerstarchADC(P≤0.05)fordietPH.AmongHdiets,significantlybetterfilletyieldwasfoundforfishfeddietPH,butnootherdifferenceswerefoundinseabassfilletorganolepticcharacteristics.SerumglucoseandcholesterolwereelevatedinfishfedCPdiets,whileproteinandtriacylglycerolsdidnotshowsignificantdifferencesamongtreatments.Fishfedthetestdietsshowednosignificantevidenceofeitherimmunosuppressionorimmunostimulation.Histologyofliver,spleen,kidneyandforegutrevealednopathologicalabnormalities.Fieldpeas,chickpeasandfababeanscanbeincludedinEuropeanseabassdietsupto350gkg-1substitutingforwheatwithnonegativeeffectsongrowthperformance,carcasscompositionororganolepticcharacteristics.Effectsofcultivationareaandyearonproximatecompositionandantinutrientsinthreedifferentkabuli-typechickpea(Cicerarientinum)varieties.Nikolopoulou,D.,Grigorakis,K.,Stasini,M.,Alexis,M.&Iliadis,K.(2006).EuropeanFoodResearchandTechnology,223(6),737-741.LinktoArticleReadAbstractThreedifferentvarietiesofkabuli-typechickpeaswerecultivatedinthreedifferentcultivationareasandfortwoyears.Anevaluationwascarriedouttoseetheeffectofyear,ofvarietyandcultivationareaonthenutritionalvalueofchickpeasi.e.theproximatecomposition,thesugars(starch,non-starchpolysaccharides,rafinoseseriesoligosaccharidesandsucrose)andtanninsandphyticacidcontents.Thecultivationarea,thecultivationyearandtheplantvariety,aswellastheirinteractionssignificantlyaffectthecompositionandthesugarscontentsinchickpea.Highproportionofthetotalvariationforallstudiedparametersexplainedbythemaineffectsofvarietyindicatesasignificantheritabilityforthem.Cultivationareawasfoundtohaveasignificanteffectonstarchcontents,RSO,tanninsandphyticacid.Yearwasfoundtoaffectfatcontents,NSPandsucrosecontents.RainfallistheclimatecharacteristicthatmayberesponsIBLefortheseyear-dependentdifferences.Moisturedeficitstressaffectsyieldandqualityingroundnutseeds.Chakraborty,K.,Bishi,S.K.,Singh,A.L.,Kalariya,K.A.&Kumar,L.(2013).IndianJournalofPlantPhysiology,18(2),136-141.LinktoArticleReadAbstractApotstudywascarriedoutusingsixgroundnutcultivarsviz.JL286,TPG41,HNG10,GG20,CSMG84-1andGG11duringKharif2011tofindouttheinfluenceofmoisturedeficitstressonyield,seedandoilqualityandcomposition.Prolongedmoisturedeficitstressreducedpodandfodderyieldandoilcontent,whileaccumulationofraffinoselikeoligosaccharides(RFOs)increasedintheseeds.Stabilityofoil(O/Lratio)didnotaltersignificantlyduetomoisturedeficitstress.Ingeneral,theVirginiaRunnercultivarsshowedmorereductioninyieldandothernutritionalcharacters,butaccumulatedmorecompatiblesolutesintermsofRFOstocombatmoisturedeficitstress,indicatingacquisitionoftolerantcharacteristicsinthisgroupattheexpenseofyieldandnutritionalcharactersoftheseed.Differencesinfreezetoleranceofzoysiagrasses:II.Carbohydrateandprolineaccumulation.Patton,A.J.,Cunningham,S.M.,Volenec,J.J.&Reicher,Z.J.(2007).CropScience,47(5),2170-2181.LinktoArticleReadAbstractColdhardinessamongzoysiagrass(Zoysiaspp.)genotypesvaries,butthephysiologicalbasisforcoldhardinessisnotcompletelyunderstood.Theobjectiveofthisstudywastodeterminetherelationshipofcarbohydrate(starch,totalsolublesugars,totalreducingsugars,sucrose,glucose,andraffinosefamilyoligosaccharides)andprolineconcentrationswiththecoldacclimationofzoysiagrassandthelethaltemperaturekilling50%oftheplants(LT50).Thirteengenotypesofzoysiagrasswereselectedwithcontrastinglevelsofwinterhardiness.Plantsweregrownfor4wkof8/2°Cday/nightcyclesanda10-hphotoperiodof300µmolm-2s-1toinducecoldacclimation.Rhizomesandstolonsweresampledfromnonacclimatedandcold-acclimatedplantsandusedforcarbohydrateandprolineanalysis.Concentrationsofsolublesugarsandprolineincreasedduringcoldacclimation,whilestarchconcentrationsdecreased.Starch,sugar/starchratio,glucose,totalreducingsugars,andprolineincold-acclimatedplantswerecorrelated(r=0.61,−0.67,−0.73,−0.62,and−0.62,respectively)withLT50.Thesecorrelationsindicatethathigherconcentrationsoftotalreducingsugars,glucose,andprolinearepositivelyassociatedwithzoysiagrassfreezetolerance,whereashigherconcentrationsofstarchappeareddetrimentaltofreezetolerance.CharacterizationofSpanishpeanutgermplasm(ArachishypogaeaL.)forsugarprofilingandoilquality.Bishi,S.K.,Kumar,L.,Dagla,M.C.,Mahatma,M.K.,Rathnakumar,A.L.,Lalwani,H.B.&Misra,J.B.(2013).IndustrialCropsandProducts,51,46-50.LinktoArticleReadAbstractPeanutisanimportantoilseedcropoftropicalandsub-tropicalareaoftheworld.Asarichsourceofenergy,vitaminsandminerals,ithasbeenacceptedfortablepurposeassnacksindomesticandinternationalmarket.ThequalityofseedsofsixtySpanishgermplasmaccessionsofpeanutwereanalyzedfortheirglucose,sucrose,raffinosefamilyoligosaccharides(RFOs)andfattyacidprofile.Significantgenotypicdifferenceswereobservedforallthetraits.Amongthesaccharides,sucroseaccountedforthemajorfractionwithameanvalueof4.6%intherangeof2.44–7.61%;themeanvalueofRFOswas0.62%intherangeof0.17–1.56%whilethemeanvalueforglucosewas0.04%intherangeof0.01–0.11%.Themeanoilcontentwas50.3%inrangeof47.0–54.6%.Thefattyacidcompositionconsisted12.4–24.5%palmiticacid,2.1–5.3%stearicacid,40.3–51.5%oleicacidand18.7–40.6%linoleicacid.GlucosecontentwasfoundtobepositivelycorrelatedwithsucroseandnegativelycorrelatedwithRFOs.Thecorrelationbetweenoilcontentandanyofglucose,sucrose,orRFOswasnotsignificant.Amongthemajorfattyacids,anegativecorrelationbetweenoleicacidlinoleicacidwasobserved.Somegenotypeswerefoundtobesuperiorindividuallyfordifferenttraitsandfewweresuperiorformultipletraits.NRCG14436wasidentifiedforhighsucrose,lowglucoseandlowoilcontent;NRCG14470wasidentifiedforlowRFOs,lowglucoseandhighoilcontent,andhighO/Lratio;whileNRCG14404wasidentifiedforlowRFOs,lowglucoseandlowoilcontent.HighO/Lratio(>2.0)wasobservedinaccessionsNRCG14472withhighoilcontent.Thus,superioraccessionsidentifiedfordifferenttraitswouldbeusefulforpeanutbreederslookingforgermplasmcontaininghighoil,lowoil,lowRFO,highsucrose,lowglucoseandhighO/Lratio.FreezingtoleranceattributesduringspringdeacclimationforthreeasparaguscultivarswithvaryingadaptationtosouthernOntario.Panjtandoust,M.&Wolyn,D.J.(2016).JournaloftheAmericanSocietyforHorticulturalScience,141(1),22-33.LinktoArticleReadAbstractWinterhardinessinasparagus(Asparagusofficinalis)mayberelatedtopropercoldacclimationandinductionoffreezingtoleranceinthefall,levelsandmaintenanceoffreezingtoleranceinthewinter,andthetimingofdeacclimationinthespring.Prematuredeacclimationandtheinabilitytoreacclimatecouldresultincrowndamagefromspringfreeze-thawcycles.Afieldexperimentwasconducted,replicatedover2years,todeterminehowthreecultivarswithvaryingadaptationtosouthernOntariodeacclimateinthespringbyassessingLT50(thetemperatureatwhich50%ofplantsdie)andbiochemicalandphysiologicalparametersassociatedwithfreezingtolerance.‘UC157’(UC),theleast-adaptedcultivar,deacclimatedaftersoiltemperaturesroseabovefreezing;LT50valuesincreasedlinearlyovertimeandwereunaffectedbyfluctuationsinsoiltemperature.‘JerseyGiant’(JG),acultivarwithmoderateadaptation,rapidlydeacclimatedwithincreasedsoiltemperaturebutappearedtopartiallyreacclimateastemperaturesdecreased.For‘GuelphMillennium’(GM),themost-adaptedcultivar,LT50valuesdidnotchange,maintainingthegreatestlevelsoffreezingtoleranceduringthespringsamplingperiod.AlthoughLT50valuesdidnotdifferamongcultivarsonthefirstspringsamplingdate,rankingforfreezingtoleranceatthefinalsamplingineachyearwasGM>JG>UC,whichisconsistentwithadaptation.Rhizometraitsweremostassociatedwithfreezingtoleranceandincludedhighconcentrationsoflow-molecular-weightfructans(LFs),glucose,andprolineandlowpercentagewaterandsucroseconcentration.Overall,datasuggestthatthetimingofdeacclimationandlossoffreezingtoleranceinthespringmaysignificantlyaffectwinterhardiness;cultivarsthatlosefreezingtoleranceearlyandcannotreacclimatecouldsuffermostfromlatespringfreeze-thawcycles.ColourimetricmethodforthedeterminationofRaffinose(alsostachyoseandverbascose),SucroseandD-Glucoseinlegumeseeds,plantmaterials,foodstuffsandfeedPrinciple: (α-galactosidase)(1)Raffinose+stachyose+verbascose+H2O→D-galactose+ sucrose (invertase)(2)Sucrose+H2O→D-glucose+D-fructose (glucoseoxidase)(3)D-Glucose+H2O+O2→D-gluconate+H2O2 (peroxidase)(4)2H2O2+p-hydroxybenzoicacid+4-aminoantipyrine→ quinoneimine+4H2OKitsize: 120assaysofeachperkitMethod: Spectrophotometricat510nmReactiontime: ~20minDetectionlimit: 100mg/LApplicationexamples:Analysisofgrainlegumesandothermaterialscontainingraffinose,stachyoseandverbascoseMethodrecognition: UsedandacceptedinfoodanalysisAdvantagesVerycompetitiveprice(costpertest) Allreagentsstablefor>2yearsafterpreparation Simpleformat Rapidreaction Mega-Calc™softwaretoolisavailablefromourwebsiteforhassle-freerawdataprocessing Standardincluded
Megazyme品牌产品简介

Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
Megazyme的主要产品线包括:

◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号 | 中文品名 | 用途 |
K-ACETAF | 乙酸[AF法]检测试剂盒 | 酶法定量分析乙酸最广泛使用的方法 |
K-ACHDF | 可吸收糖/膳食纤维检测试剂盒 | 酒精沉淀法测定膳食纤维 |
K-AMIAR | 氨快速检测试剂盒 | 用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。 |
K-AMYL | 直链淀粉/支链淀粉检测试剂盒 | 谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测 |
K-ARAB | 阿拉伯聚糖检测试剂盒 | 果汁浓缩液中阿拉伯聚糖的检测 |
K-ASNAM | L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒 | 用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析 |
K-ASPTM | 阿斯巴甜检测试剂盒 | 专业用于测定饮料和食品中阿斯巴甜含量,操作简单 |
K-BETA3 | β-淀粉酶检测试剂盒 | 适用于麦芽粉中β-淀粉酶的测定 |
K-BGLU | 混合键β-葡聚糖检测试剂盒 | 测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量 |
K-CERA | α-淀粉酶检测试剂盒 | 谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定 |
K-CITR | 柠檬酸检测试剂盒 | 快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量 |
K-DLATE | 乳酸快速检测试剂盒 | 快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量 |
K-EBHLG | 酵母β-葡聚糖酶检测试剂盒 | 用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖 |
K-ETSULPH | 总亚硫酸检测试剂盒 | 测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法 |
K-FRGLMQ | D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒 | 适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。 |
K-FRUC | 果聚糖检测试剂盒 | 含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。 |
K-FRUGL | D-果糖/D-葡萄糖检测试剂盒 | 对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。 |
K-GALM | 半乳甘露聚糖检测试剂盒 | 食品和植物产品中半乳甘露聚糖的含量检测 |
K-GLUC | D-葡萄糖[GOPOD]检测试剂盒 | 谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。 |
K-GLUHK | D-葡萄糖[HK]检测试剂盒 | 植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。 |
K-GLUM | 葡甘聚糖检测试剂盒 | 植物和食品中葡甘聚糖的含量测定。 |
K-INTDF | 总膳食纤维检测试剂盒 | 总膳食纤维特定检测和分析 |
K-LACGAR | 乳糖/D-半乳糖快速检测试剂盒 | 用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖 |
K-LACSU | 乳糖/蔗糖/D-葡萄糖检测试剂盒 | 混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定 |
K-LACTUL | 乳果糖检测试剂盒 | 特异性、快速和灵敏测量奶基样品中乳果糖含量 |
K-MANGL | D-甘露糖/D-果糖/D-葡萄糖检测试剂盒 | 适合测定植物产品和多糖酸性水解产物中D-甘露糖含量 |
K-MASUG | 麦芽糖/蔗糖/D-葡萄糖检测试剂盒 | 在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测 |
K-PECID | 胶质识别检测试剂盒 | 食品配料中果胶的鉴别 |
K-PHYT | 植酸(总磷)检测试剂盒 | 食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析 |
K-PYRUV | 丙酮酸检测试剂盒 | 在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析 |
K-RAFGA | 棉子糖/D-半乳糖检测试剂盒 | 快速测量植物材料和食品中棉子糖和半乳糖含量 |
K-RAFGL | 棉子糖/蔗糖/D-半乳糖检测试剂盒 | 分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定 |
K-SDAM | 淀粉损伤检测试剂盒 | 谷物面粉中淀粉损伤的检测和分析 |
K-SUCGL | 蔗糖/D-葡萄糖检测试剂盒 | 饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析 |
K-SUFRG | 蔗糖/D-果糖/D-葡萄糖检测试剂盒 | 适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定 |
K-TDFR | 总膳食纤维检测试剂盒 | 总膳食纤维检测 |
K-TREH | 海藻糖检测试剂盒 | 快速、可靠地检测食品、饮料和其它物料中海藻糖含量 |
K-URAMR | 尿素/氨快速检测试剂盒 | 适用于水、饮料、乳制品和食品中尿素和氨的快速测定 |
K-URONIC | D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒 | 简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸) |
K-XYLOSE | D-木糖检测试剂盒 | 简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量 |
K-YBGL | Beta葡聚糖[酵母和蘑菇]检测试剂盒 | 检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量 |
新品排行榜
1
Megazyme/Amyloglucosidase (Asper...
2
Megazyme/α-Amylase (Bacill...
3
Megazyme/Arabinoxylan (Wheat Flo...
4
Megazyme/D-Xylose Assay Kit/K-XY...
5
Megazyme/MegaQuant Colorimeter T...
6
Megazyme/Wheat Arabinoxylan (enz...
7
Megazyme/Cellazyme C Tablets/T-C...
8
Megazyme/Amyloglucosidase (Asper...
9
Megazyme/Amylazyme HY Tablets/T-...
10
Megazyme/CM-Pachyman/P-CMPAC/4 g...
文章排行榜
1
Megazyme/Total Starch Assay Kit (AA/AMG) /K-TSTA-100A/100 assays
2
膳食纤维总量检测试剂盒
3
K-TSTA,淀粉总量检测试剂盒,Total Starch (AA/AMG) Assay Kit
4
Megazyme/Phytic Acid (Total Phosphorus) Assay Kit/K-PHYT/50 assays per kit
5
Megazyme/Protease (Subtilisin A from Bacillus licheniformis)/E-BSPRT-10ML/0.5 grams - 10ML
6
Megazyme/AZCL-Pachyman/I-AZPAC/3 grams
7
Megazyme/AZCL-Curdlan (fine)/I-AZCURF/3 grams
8
Megazyme/Total Dietary Fiber Controls/K-TDFC/Sufficient for 6 Controls
9
Bit_试剂_Equl意果_易扩_AdvancedBioMatrix_DivBio_Drummond_Genie_Glascol_Megazyme_Phadebas_Worthington
10
Harlan Bioproducts_试剂_Equl意果_易扩_AdvancedBioMatrix_DivBio_Drummond_Genie_Glascol_Megazyme_Phadebas_Worthington