提醒:代购产品,无质量问题不接受退换货,下单前请仔细核对信息。下单后请及时联系客服 核对商品价格,订单生效后再付款。
Megazyme/Sucrose/D-Fructose/D-Glucose Assay Kit/K-SUFRG/300 assays (100 of each) per kit
价格:

自营商城

解放采购

正品保障

及时交付

厂家直采

一站服务

货号:
品牌:
会员服务:
尊享会员价
贵宾专线
运费优惠
闪电退款
福利优惠
上门换新
友情提示
以上价格仅为参考,请联系客服询价。
免费咨询热线
4000-520-616
产品说明
TheSucrose/D-Fructose/D-Glucosetestkitissuitablefor themeasurementandanalysisofsucrose,D-glucoseandD-fructoseinplantandfoodproducts.ExtendedcofactorsstABIlity.Dissolvedcofactorsstablefor>1yearat 4oC. Grapeandwineanalysis:Oenologiststoexploitadvancedtestkits.Charnock,S.C.&McCleary,B.V.(2005).RevuedesEnology,117,1-5.LinktoArticleReadAbstractItiswithoutdoubtthattestingplaysapivotalrolethroughoutthewholeofthevinificationprocess.ToproducethebestpossIBLequalitywineandtominimiseprocessproblemssuchas“stuck”fermentationortroublesomeinfections,itisnowrecognisedthatifpossibletestingshouldbeginpriortoharvestingofthegrapesandcontinuethroughtobottling.TrADItionalmethodsofwineanalysisareoftenexpensive,timeconsuming,requireeitherelaborateequipmentorspecialistexpertiseandfrequentlylackaccuracy.However,enzymaticbio-analysisenablestheaccuratemeasurementofthevastmajorityofanalytesofinteresttothewinemaker,usingjustonepieceofapparatus,thespectrophotometer(seepreviousissueNo.116foradetailedtechnicalreview).Grapejuiceandwineareamenabletoenzymatictestingasbeingliquidstheyarehomogenous,easytomanipulate,andcangenerallybeanalysedwithoutanysamplepreparation.Megazyme“advanced”winetestkitsgeneralcharacteristicsandvalidation.Charnock,S.J.,McCleary,B.V.,Daverede,C.&Gallant,P.(2006).ReveuedesOenologues,120,1-5.LinktoArticleReadAbstractManyoftheenzymatictestkitsareofficialmethodsofprestigiousorganisationssuchastheAssociationofOfficialAnalyticalChemicals(AOAC)andtheAmericanAssociationofCerealChemists(AACC)inresponsetotheinterestfromoenologists.Megazymedecidedtouseitslonghistoryofenzymaticbio-analysistomakeasignificantcontributiontothewineindustry,bythedevelopmentofarangeofadvancedenzymatictestkits.Thistaskhasnowbeensuccessfullycompletedthroughthestrategicandcomprehensiveprocessofidentifyinglimitationsofexistingenzymaticbio-analysistestkitswheretheyoccurred,andthenusingadvancedtechniques,suchasmolecularBIOLOGy(photo1),torapidlyovercomethem.Noveltestkitshavealsobeendevelopedforanalytesofemerginginteresttotheoenologist,suchasyeastavailablenitrogen(YAN;seepages2-3ofissue117article),orwherepreviouslyenzymesweresimplyeithernotavailable,orweretooexpensivetoemploy,suchasforD-mannitolanalysis.EvaluationofTypeofProcessonFunctionalPropertiesandonNutritionalandAnti-nutritionalCompositionofYams(Dioscoreacayenensis-rotundata).Kouassi,N.K.,Nindjin,C.,Tetchi,A.F.&Amani,G.N.(2010).JournalofFoodTechnology,8(4),191-199.LinktoArticleReadAbstractThenutritional,anti-nutritionalcompositionandfunctionalpropertiesofyamfloursobtainedfromdifferentprocesseswithfourvarietiesofDioscoreacayenensis-rotundataextensivelyconsumedinCoted’Ivoirewereevaluated.Theresultsshowedthatnutritionalandanti-nutritionalcompositionofyamsareloweranddecreasegreatlyduringboilingthanbaking.Thelowervaluesofleastgelatinizationconcentrationobtainedwithflourofcookedyamthanrawyamflourisduetothelossofamylosewhichisassociatedwithstarchgranulesgelatinizationduringthecooking.Thisgelatinizationischaracterizedbygranulestarchofhighsizeandaheterogeneousdistribution.Thegreatsolubilityandtheweakcapacityofswellingduringheatingofflourofboiledyamareduetothefactthatthegelatinizationofstarchhadbeenhigherintheboiling.Thisgreatgelatinizationinboiledyamisassociatedtothehighlevelofglucoserateduringdigestionandcouldinducemetabolicdisorders.SubmergedcultureprocessforbiomassandexopolysaccharideproductionbyAntarcticyeast:someengineeringconsiderations.Vlaev,S.,Rusinova-Videva,S.,Pavlova,K.,Kuncheva,M.,Panchev,I.&Dobreva,S.(2013).AppliedMicrobiologyandBiotechnology,97(12),5303-5313.LinktoArticleReadAbstractProductionofbiomassandextracellularpolysaccharide(EPS)frompsychrophilicSporobolomycessalmonicolorAL1inastirredbioreactorwasstudied.Theaspectsofproductiontechnical-scaleparameters,namely,bioreactorflowfield,biomassandEPSproductionrates,oxygenmasstransferperinputpower,aswellasimportantproductproperties,suchasrheologyandstabilityofEPSmixtures,wereconsidered.Thebioprocesswasfoundtoproceedinnon-Newtonianflowwithconsistencycoefficientrisingtypicallyto0.03Pa.snandflowindexdecliningto0.7.Flowmodelingwascarriedoutandshowedgoodhomogenizationforsubstratedeliveryatagitationratesexceeding400rpm.Agitationrateslowerthan400rpmwereconsideredcounterproductiveduetoflowfieldnon-uniformity.Thecelldensityreached5g/landEPSproductionyieldreached5.5g/latproductionrate0.057gEPS/lperhour(0.01gEPS/gbiomassperhour).Oxygenuptakerateandoxygentransferratewereintherangeof0.5–1.7mmolO2/lperhourand2–4.7mmolO2/lperhour,respectively.ThemasstransfercoefficientatreactionconditionswasfoundtobeintherangeKLa~0.004−0.01s-1.Thebioprocessbiologicalperformancewashigheratmoderateagitationspeedandrevealedbiomassdiminutionandcellinactivationbyincreasingimpellerrevolutionsandshearrate.TheproductEPSwasfoundtointroduceshear-thinningbehaviorinwatersolutionswithapparentviscosityofupto30mPa.sandtostabilize1–2%oil-in-wateremulsionsimprovingtheirlipophilicproperties.TheemulsiondispersionindexwasfoundtobecomparablewiththeoneofArlacel165,theemulsifierusedincosmetic.Thelong-termperformanceofthecomplexcreammixturesoftheglucomannanpreparedincommercialformatwasfoundpromisingforfurtherapplication.Near‐infraredreflectancecalibrationsfordeterminingsucrosecontentinsoybeanbreedingusingartificialreferencesamples.Sato,T.,Zahlner,V.,Berghofer,E.,Lošák,T.&Vollmann,J.(2012).PlantBreeding,131(4),531-534.LinktoArticleReadAbstractInfood-gradesoybeansforhumannutrition,sucrosecontentisacharacterofinterestapartfromprotein,becausesucroseaffectsflavourandothersoy-foodproperties.Asdeterminationofsucrosecontentthroughseparativeorenzymaticmethodsisnotsuitableforanalysinglargenumbersofsamples,theobjectiveofthisresearchwastodevelopnear-infraredreflectancespectroscopy(NIRS)calibrationsforrapidscreeningofbreedinglinesforsucrose.Conventionalsoybeansampleshaveasucrosecontentof30–60g/kg,whereashigh-sucrosereferencesamplesarelacking.Therefore,bothnaturalandartificial(additionalsucroseadded)referencesampleswithasucrosecontentofupto140g/kgwerecombined,andaNIRScalibrationmodelwasdeveloped(cross-validationR2=0.969)forsucrose.Utilizingwavelengthrangeswithhomogeneousperformanceinbothnaturalandartificialsamples,apredictionmodelwasobtained,whichsuggestsastableperformanceofthecalibrationoverawiderangeofsucroseconcentrations.Thus,identificationofhigh-sucrosesoybeanintrogressionsshouldbepossibleinappropriatesegregatingpopulations.AlteredseedoilandglucosinolatelevelsintransgenicplantsoverexpressingtheBrassicanapusShootmeristemlessgene.Elhiti,M.,Yang,C.,Chan,A.,Durnin,D.C.,Belmonte,M.F.,Ayele,B.T.,TahirM.&Stasolla,C.(2012).JournalofExperimentalBotany,63(12),4447-4461.LinktoArticleReadAbstractSHOOTMERISTEMLESS(STM)isahomeoboxgeneconservedamongplantspecieswhichisrequiredfortheformationandmaintenanceoftheshootmeristembysuppressingdifferentiationandmaintaininganundeterminedcellfatewithintheapicalpole.Toassessfurthertheroleofthisgeneduringseedstorageaccumulation,transgenicBrassicanapus(Bn)plantsoverexpressingordown-regulatingBnSTMunderthecontrolofthe35Spromoterweregenerated.OverexpressionofBnSTMincreasedseedoilcontentwithoutaffectingtheproteinandsucroselevel.Thesechangeswereaccompaniedbytheinductionofgenesencodingseveraltranscriptionfactorspromotingfattyacid(FA)synthesis:LEAFYCOTYLEDON1(BnLEC1),BnLEC2,andWRINKLE1(BnWRI1).Inaddition,expressionofkeyrepresentativeenzymesinvolvedinsucrosemetabolism,glycolysis,andFAbiosynthesiswasup-regulatedindevelopingseedsectopicallyexpressingBnSTM.ThesedistinctiveexpressionpatternssupporttheviewofanincreasedcarbonfluxtotheFAbiosyntheticpathwayindevelopingtransformedseeds.TheoverexpressionofBnSTMalsoresultedinadesirablereductionofseedglucosinolate(GLS)levelsascribedtoatranscriptionalrepressionofkeyenzymesparticipatingintheGLSbiosyntheticpathway,andpossiblytothedifferentialutilizationofcommonprecursorsforGLSandindole-3-aceticacidsynthesis.NochangesinoilandGLSlevelswereobservedinlinesdown-regulatingBnSTM.Takentogether,thesefindingsprovideevidenceforanovelfunctionforBnSTMinpromotingdesirablechangesinseedoilandGLSlevelswhenoverexpressedinB.napusplants,anddemonstratethatthisgenecanbeusedasatargetforgeneticimprovementofoilseedspecies.Engineeringcyanobacteriatosynthesizeandexporthydrophilicproducts.Niederholtmeyer,H.,Wolfstädter,B.T.,Savage,D.F.,Silver,P.A.&Way,J.C.(2010).AppliedandEnvironmentalMicrobiology,76(11),3462-3466.LinktoArticleReadAbstractMetabolicengineeringofcyanobacteriahastheadvantagethatsunlightandCO2arethesolesourceofenergyandcarbonfortheseorganisms.However,asphotoautotrophs,cyanobacteriagenerallylacktransporterstomovehydrophilicprimarymetabolitesacrossmembranes.Toaddresswhethercyanobacteriacouldbeengineeredtoproduceandsecreteorganicprimarymetabolites,SynechococcuselongatusPCC7942wasengineeredtoexpressgenesencodinganinvertaseandaglucosefacilitator,whichmediatedsecretionofglucoseandfructose.Similarly,expressionoflactatedehydrogenase-andlactatetransporter-encodinggenesallowedlactateaccumulationintheextracellularmedium.Expressionoftherelevanttransporterwasessentialforsecretion.Productionofthesemoleculeswasfurtherimprovedbyexpressionofadditionalheterologousenzymes.SugarssecretedbytheengineeredcyanobacteriacouldbeusedtosupportEscherichiacoligrowthintheabsenceofadditionalnutrientsources.Theseresultsindicatethatcyanobacteriacanbeengineeredtoproduceandsecretehigh-valuehydrophilicproducts.Variationandcorrelationofpropertiesindifferentgradesofmaplesyrup.Singh,A.S.,Jones,A.M.P.&Saxena,P.K.(2014).PlantFoodsforHumanNutrition,69(1),50-56.LinktoArticleReadAbstractThirtyfivecommercialmaplesyrupsfromtwelveproducersinSouthernOntariowereevaluatedforpropertiesincludinglighttransmittance,autofluorescence,density,pH,totalsolublesolids(TSS),glucoseandfructosecontent,totalphenolcontent,antioxidantpotentialandmineralcontent(Mg,Mn,P,Zn,Ca,K,FeandPb).Ahighdegreeofvariabilitywasfoundinmanycharacteristics,oftenexceedinganorderofmagnitude.Syrupswerecategorizedbasedonlighttransmissionat560nmintoamber(12),dark(13)andverydark(10)usingInternationalMapleSyrupInstitute(IMSI)guidelines.Nostatisticaldifferenceswerefoundamonggradesofsyrupfordensity,pH,TSS,glucose,fructose,totalreducingsugars,glucose:fructoseratio,magnesium,manganeseorpotassium.Darkersyrupsshowedsignificantlyhigherautofluorescence,totalphenolcontent,antioxidantpotential,phosphorous,calciumandtotalmineralcontent.Significantnegativecorrelationsofpercenttransmissionwithtotalphenolcontent,antioxidantpotentialandtotalmineralcontentarereported.Significantpositivecorrelationsamongtotalphenolcontent,antioxidantpotentialandtotalmineralcontentarealsodescribed.Theresultsfromthisstudysuggestthatdarkersyrupstendtocontainmorebeneficialtraitsandmaybeappliedindevelopingfunctionalfoodsandvalueaddedproducts.Spontaneouspostharvestfermentationofaçai(Euterpeoleracea)fruit.Aguiar,F.,Menezes,V.&Rogez,H.(2013).PostharvestBiologyandTechnology,86,294-299.LinktoArticleReadAbstractAçai(Euterpeoleracea)fruit(EOF)arewidelycommercializedintheBrazilianAmazon.Thesefruitcontainahighbacterialloadandaretransportedonboardsstowedinsideoroutsidetheholdsofsmallboats.Inthiscontext,postharvestparameterswereassessedunderconditionsthatsimulatedthesetwomethodsofEOFtransport:stowageinclosedpolystyreneboxes,simulatingtheinsideofcargoholds,i.e.,transportinaclosedsystem;andopenbaskets,simulatingtransportinanopenenvironment,i.e.,transportintheproworbowoftheboat.EOFsufferedspontaneousfermentationofalcoholic,acetic,andlactictypesintheclosedsystem,whichisthemostcommontypeoftransportationofthisfruit.Intheclosedsystem,therewasapredominanceoflacticacidbacteriaoveraceticacidbacteria,with82%and95%oftheinitialcontentofD-glucoseandD-fructosebeingconsumed,respectively,after27hofexperiment.Theweightlossreached1.7%andtherewasalogarithmicdecreaseofthemajorphenoliccompoundsofthefruitintheclosedsystem,withlossesof78%ofcyanidin-3-rutinoside,88%ofcyanidin-3-glucoside,78%ofhomorientin,and72%oforientinafter27h,whichwashigherthanintheopensystem(58%,66%,73%and62%,respectively).AnalysesonEOFstowedinaclosedsystemindicatedthattherespiratoryratewascharacteristicofanon-climactericfruit,i.e.,itshowedalogarithmicdecayintheproductionofCO2(R2=0.995;PPartialStudyofYamTuber(Dioscoreaspp.)PartsduringtheGrowthPeriod.ClaverDegbeu,K.,N"dri,Y.D.,FabriceTetchi,A.,Nindjin,C.,N"guessanAmani,G.&Bakayoko,A.(2013).AdvanceJournalofFoodScience&Technology,5(9),1120-1131.LinktoArticleReadAbstractGrowinggradientintolongitudinalaxisofyamtuberwasstudythroughstarchpropertiesandnutritionalcompositionoftuberparts(proximal,mediananddistal)duringthetuberization.TwovarietiesofthecomplexD.cayenensis-rotundata(kangbaandkponan)wereused.Clarity,swellingandsolubility,flowbehaviorandsyneresisofstarchandproteincontent,alcohol-solublesugarsoftheflourwerestudies.Theashassessedbymicroanalysis.Starchclarityoftuberpartsincreasedduringthegrowthperiod.Theproximal(56±2.06%)andmedian(54.5±1.09%)partsexhibitedhighclaritythanthedistal(48.2±2.56%)one.Atearlierstageoftuberization,theviscosityratiooftuberparts(var.Kponan)wasweak.Thisindicatesthepossibilitytouseitasthickeningagentinshearingsauce.Waterlossdecreasedduringthegrowthperiodforthethreetuberparts.Itwasthesamebehaviorfortheswellingpower.Concerningthenutritionalcompositionoftheflour,amountofproteindidnotinfluencedbythedegreeoftubermaturity.Alcohol-solublesugarswerehigheratearlierstageoftuberizationthanatmaturityofthetuber.Mineralcontentwasappreciableatmaturitythanatbeginningofthetuberization.Theextentmineralaccordingtotheiramountwas:K,P,MgandS.Starchpropertiessuchasclarity,syneresisandswellingwereimprovedatmaturityofthetuber.Itwasmorefortheproximalandmedianpartsthanthedistalone.Yamtubercontentaappreciableamountofproteinandmineralatmaturity.GalanthamineproductionbyLeucojumaestivumL.shootcultureinamodifiedbubblecolumnbioreactorwithinternalsections.Georgiev,V.,Ivanov,I.,Berkov,S.,Ilieva,M.,Georgiev,M.,Gocheva,T.&Pavlov,A.(2012).EngineeringinLifeSciences,12(5),534-543.LinktoArticleReadAbstractShootcultureofsummersnowflake(LeucojumaestivumL.)wassuccessfullycultivatedinanadvancedmodifiedglass-columnbioreactorwithinternalsectionsforproductionofAmaryllidaceaealkaloids.Thehighestamountsofdrybiomass(20.8g/L)andgalanthamine(1.7mg/L)wereachievedwhenshootswereculturedat22°Cand18L/(L•h)flowrateofinletair.Attheseconditions,theL.aestivumshootculturepossessedmixotrophic-typenutrition,synthesizingthehighestamountsofchlorophyll(0.24mg/gDW(dryweight)chlorophyllAand0.13mg/gDWchlorophyllB).Thealkaloidsextractofshootbiomassshowedhighacetylcholinesteraseinhibitoryactivity(IC50=4.6mg).Thegaschromatography–massspectrometry(GC/MS)profilingofbiosynthesizedalkaloidsrevealedthatgalanthamineandrelatedcompoundswerepresentedinhigherextracellularproportionswhilelycorineandhemanthamine-typecompoundshadhigherintracellularproportions.Thedevelopedmodifiedbubble-columnbioreactorwithinternalsectionsprovidedconditionsensuringthegrowthandgalanthamineproductionbyL.aestivumshootculture.Sugaraccumulationinrootsoftwograpevarietieswithcontrastingresponsetowaterstress.Rogiers,S.Y.,Holzapfel,B.P.&Smith,J.P.(2011).AnnalsofAppliedBiology,159(3),399-413.LinktoArticleReadAbstractRootsugaraccumulationwasstudiedintwograpevinevarietiescontrastingintolerancetowaterstress.Duringa10-daywaterwithholdingtreatment,thedrought-tolerantvariety,Grenache,sustainedlessnegativepredawnandmiddayleafwaterpotentialsaswellasrootwaterpotentialcomparedwiththesensitivevariety,Semillon.GrenachevinesalsomaintainedlowerstomatalconductanceandtranspirationthanSemillonvinesthroughoutthedryingperiod.Inbothvarietiestherewasaccumulationofsucroseintherootsandconcentrationswereinverselycorrelatedtoleafandrootwaterstatus.InbothGrenacheandSemillon,elevatedrootosmolalitywasassociatedwithdecreasedsoilmoistureindicatingthatsugaraccumulationmayplayaroleinosmoticprotection.Petiolexylemsapabscisicacid(ABA)concentrationsincreasedwithwaterdeficitinbothvarietiesandwerehighestforvineswiththemostnegativerootandpredawnleafwaterpotentials.FurThermore,rootsucroseconcentrationswerepositivelycorrelatedwithleafxylemsapABAconcentrations,indicativeofintegrationbetweencarbohydratemetabolismandtheABAsignallingsystem.Similarrootsugaraccumulationpatternsbetweenthetwovarieties,however,demonstratethatotherfactorsarelikelyinfluencingtheabilityofthedrought-tolerantvarietytoremainhydrated.CarbohydratereservestatusofMalbecgrapevinesafterseveralyearsofregulateddeficitirrigationandcroploadregulation.Dayer,S.,Prieto,J.A.,Galat,E.&PerezPeña,J.(2013).AustralianJournalofGrapeandWineResearch,19(3),422-430.LinktoArticleReadAbstractBackgroundandAims:Regulateddeficitirrigation(RDI)andbunchthinningaretwoviticulturalpracticesappliedworldwide.Thereislimitedknowledge,however,abouttheircombinedeffectsoncarbohydratedynamicsandaccumulation.Weevaluatedduringyear3and4oftheexperimenttheeffectof4consecutiveyearsofRDIandbunchthinningoncarbohydratestatus,vegetativeandreproductivevariables.MethodsandResults:From2006/07to2009/10,weimposedfourlevelsofwatersupply[100,60,38and25%ofreferenceevapotranspiration(ETo)]andtwocroploads(100and50%ofthebunches).Wecomparedshootlength,flowersperinflorescenceandyieldin2009/10.Wealsomeasuredpruningmassandtheconcentrationofnon-structuralcarbohydratesindormantwoodinthewintersof2009and2010.Starchconcentrationinthetrunkwasreducedbyseverewaterdeficit(25and38%ETo)andimprovedbybunchthinning.Pruningmass,shootlength,flowersperinflorescenceandyieldwereaffectedinvineswithwaterappliedat25and38%ofETo.Conclusions:Severewaterstressandhighcroploadreducedtrunkstarchconcentrationwithnointeractionbetweenbothfactors,whereastheconcentrationoftotalnon-structuralcarbohydratewasnotaffected.Vegetativegrowthandyieldwerereducedafter4yearsofseverewaterstress.SignificanceoftheStudy:Weprovideevidencethatstarchconcentrationandcarbonpartitioningcanbemanipulatedthroughcommonviticulturalpractices,suchasirrigationandcropload.Stemcarbohydratedynamicsandexpressionofgenesinvolvedinfructanaccumulationandremobilizationduringgraingrowthinwheat(TriticumaestivumL.)genotypeswithcontrastingtolerancetowaterstress.Yáñez,A.,Tapia,G.,Guerra,F.&delPozo,A.(2017).PloSone,12(5),e0177667.LinktoArticleReadAbstractThegeneticandphysiologicalmechanismsunderlyingtherelationshipbetweenwater-solublecarbohydrates(WSC)andwaterstresstolerancearescarcelyknown.ThisstudyaimedtoevaluatethemainWSCinstems,andtheexpressionofgenesinvolvedinfructanmetabolisminwheatgenotypesgrowinginaglasshousewithwaterstress(WS;50%fieldcapacityfromheading)andfullirrigation(FI;100%fieldcapacity).Eightwheatgenotypes(fivetolerantandthreesusceptibletowaterstress)wereevaluatedinitially(experiment1)andthetwomostcontrastinggenotypesintermsofWSCaccumulationwereevaluatedinasubsequentexperiment(experiment2).MaximumaccumulationofWSCoccurred10–20daysafteranthesis.UnderWS,thestress-tolerantgenotypeexhibitedhigherconcentrationsofWSC,glucose,fructoseandfructaninthestems,comparedtoFI.Inaddition,thestress-tolerantgenotypeexhibitedhigherup-regulationofthefructan1-fructosyltransferaseB(1-FFTB)andfructan1-exohydrolasew2(1-FEHw2)genes,whereasthesusceptiblecultivarpresentedanup-regulationofthefructan6-fructosyltransferase(6-SFT)andfructan1-exohydrolasew3(1-FEHw3)genes.OurresultsindicatedcleardifferencesinthepatternofWSCaccumulationandtheexpressionofgenesregulatingfructanmetabolismbetweenthetolerantandsusceptiblegenotypesunderWS.UV-methodforthedeterminationofSucrose,D-FructoseandD-Glucoseinfoodstuffs,beveragesandothermaterialsPrinciple:          (β-fructosidase)(1)Sucrose+H2O→D-glucose+D-fructose            (hexokinase)(2)D-Glucose+ATP→G-6-P+ADP             (hexokinase)(3)D-Fructose+ATP→F-6-P+ADP   (glucose-6-phosphatedehydrogenase)(4)G-6-P+NADP+→gluconate-6-phosphate+NADPH+H+  (phosphoglucoseisomerase)(5)F-6-P     →     G-6-PKitsize:                         *100assaysofeach* Thenumberofmanualtestsperkitcanbedoubledifallvolumesarehalved. ThiscanbereadilyaccommodatedusingtheMegaQuantTM WaveSpectrophotometer(D-MQWAVE).Method:                         Spectrophotometricat340nmReactiontime:                 ~20minDetectionlimit:                1.38mg/LApplicationexamples:Beer,fruitjuices,softdrinks,milk,jam,honey,dieteticfoods,bread,bakeryproducts,dairyproducts,candies,desserts,confectionery,sweets,ice-cream,fruitandvegetables(e.g.potato),meatproducts(e.g.sausage),condiments(e.g.ketchupandmustard),feed,tobacco,cosmetics,pharmaceuticals,paperandothermaterialsMethodrecognition:   MethodsbasedonthisprinciplehavebeenacceptedbyNF,EN,NEN,DIN,GOST,IFU,AIJN,MEBAKandIOCCCAdvantagesVerycompetitiveprice(costpertest) Allreagentsstablefor>2yearsafterpreparation Rapidreaction Mega-Calc™softwaretoolisavailablefromourwebsiteforhassle-freerawdataprocessing StabilisedD-glucose/D-fructosestandardsolutionincluded Extendedcofactorsstability

Megazyme品牌产品简介

来源:作者:人气:2149发表时间:2016-05-19 10:59:00【  
Megazyme检测试剂盒 - 用于食品、饲料、乳制品、葡萄酒分析
Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
Megazyme检测试剂盒产品◆ 检测试剂盒
◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号 中文品名 用途
K-ACETAF 乙酸[AF法]检测试剂盒 酶法定量分析乙酸最广泛使用的方法
K-ACHDF 可吸收糖/膳食纤维检测试剂盒 酒精沉淀法测定膳食纤维
K-AMIAR 氨快速检测试剂盒 用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。
K-AMYL 直链淀粉/支链淀粉检测试剂盒 谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测
K-ARAB 阿拉伯聚糖检测试剂盒 果汁浓缩液中阿拉伯聚糖的检测
K-ASNAM L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒 用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析
K-ASPTM 阿斯巴甜检测试剂盒 专业用于测定饮料和食品中阿斯巴甜含量,操作简单
K-BETA3 β-淀粉酶检测试剂盒 适用于麦芽粉中β-淀粉酶的测定
K-BGLU 混合键β-葡聚糖检测试剂盒 测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量
K-CERA α-淀粉酶检测试剂盒 谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定
K-CITR 柠檬酸检测试剂盒 快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量
K-DLATE 乳酸快速检测试剂盒 快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量
K-EBHLG 酵母β-葡聚糖酶检测试剂盒 用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖
K-ETSULPH 总亚硫酸检测试剂盒 测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法
K-FRGLMQ D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒 适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。
K-FRUC 果聚糖检测试剂盒 含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。
K-FRUGL D-果糖/D-葡萄糖检测试剂盒 对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。
K-GALM 半乳甘露聚糖检测试剂盒 食品和植物产品中半乳甘露聚糖的含量检测
K-GLUC D-葡萄糖[GOPOD]检测试剂盒 谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUHK D-葡萄糖[HK]检测试剂盒 植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUM 葡甘聚糖检测试剂盒 植物和食品中葡甘聚糖的含量测定。
K-INTDF 总膳食纤维检测试剂盒 总膳食纤维特定检测和分析
K-LACGAR 乳糖/D-半乳糖快速检测试剂盒 用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖
K-LACSU 乳糖/蔗糖/D-葡萄糖检测试剂盒 混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定
K-LACTUL 乳果糖检测试剂盒 特异性、快速和灵敏测量奶基样品中乳果糖含量
K-MANGL D-甘露糖/D-果糖/D-葡萄糖检测试剂盒 适合测定植物产品和多糖酸性水解产物中D-甘露糖含量
K-MASUG 麦芽糖/蔗糖/D-葡萄糖检测试剂盒 在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测
K-PECID 胶质识别检测试剂盒 食品配料中果胶的鉴别
K-PHYT 植酸(总磷)检测试剂盒 食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析
K-PYRUV 丙酮酸检测试剂盒 在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析
K-RAFGA 棉子糖/D-半乳糖检测试剂盒 快速测量植物材料和食品中棉子糖和半乳糖含量
K-RAFGL 棉子糖/蔗糖/D-半乳糖检测试剂盒 分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定
K-SDAM 淀粉损伤检测试剂盒 谷物面粉中淀粉损伤的检测和分析
K-SUCGL 蔗糖/D-葡萄糖检测试剂盒 饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析
K-SUFRG 蔗糖/D-果糖/D-葡萄糖检测试剂盒 适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定
K-TDFR 总膳食纤维检测试剂盒 总膳食纤维检测
K-TREH 海藻糖检测试剂盒 快速、可靠地检测食品、饮料和其它物料中海藻糖含量
K-URAMR 尿素/氨快速检测试剂盒 适用于水、饮料、乳制品和食品中尿素和氨的快速测定
K-URONIC D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒 简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸)
K-XYLOSE D-木糖检测试剂盒 简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量
K-YBGL Beta葡聚糖[酵母和蘑菇]检测试剂盒 检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量
客服在线
service-logo
已有 人查看该问题
tel
全国免费服务热线
4000-520-616
微信公众号
关注我们
手机扫码,关注动态