产品说明
TheSucrose/D-GlucosetestkitissuitableforthemeasurementandanalysisofsucroseandD-glucoseinfruitjuice,beverages,honeyandfoodproducts.Grapeandwineanalysis:Oenologiststoexploitadvancedtestkits.Charnock,S.C.&McCleary,B.V.(2005).RevuedesEnology,117,1-5.LinktoArticleReadAbstractItiswithoutdoubtthattestingplaysapivotalrolethroughoutthewholeofthevinificationprocess.ToproducethebestpossIBLequalitywineandtominimiseprocessproblemssuchas“stuck”fermentationortroublesomeinfections,itisnowrecognisedthatifpossibletestingshouldbeginpriortoharvestingofthegrapesandcontinuethroughtobottling.TrADItionalmethodsofwineanalysisareoftenexpensive,timeconsuming,requireeitherelaborateequipmentorspecialistexpertiseandfrequentlylackaccuracy.However,enzymaticbio-analysisenablestheaccuratemeasurementofthevastmajorityofanalytesofinteresttothewinemaker,usingjustonepieceofapparatus,thespectrophotometer(seepreviousissueNo.116foradetailedtechnicalreview).Grapejuiceandwineareamenabletoenzymatictestingasbeingliquidstheyarehomogenous,easytomanipulate,andcangenerallybeanalysedwithoutanysamplepreparation.Megazyme“advanced”winetestkitsgeneralcharacteristicsandvalidation.Charnock,S.J.,McCleary,B.V.,Daverede,C.&Gallant,P.(2006).ReveuedesOenologues,120,1-5.LinktoArticleReadAbstractManyoftheenzymatictestkitsareofficialmethodsofprestigiousorganisationssuchastheAssociationofOfficialAnalyticalChemicals(AOAC)andtheAmericanAssociationofCerealChemists(AACC)inresponsetotheinterestfromoenologists.Megazymedecidedtouseitslonghistoryofenzymaticbio-analysistomakeasignificantcontributiontothewineindustry,bythedevelopmentofarangeofadvancedenzymatictestkits.Thistaskhasnowbeensuccessfullycompletedthroughthestrategicandcomprehensiveprocessofidentifyinglimitationsofexistingenzymaticbio-analysistestkitswheretheyoccurred,andthenusingadvancedtechniques,suchasmolecularBIOLOGy(photo1),torapidlyovercomethem.Noveltestkitshavealsobeendevelopedforanalytesofemerginginteresttotheoenologist,suchasyeastavailablenitrogen(YAN;seepages2-3ofissue117article),orwherepreviouslyenzymesweresimplyeithernotavailable,orweretooexpensivetoemploy,suchasforD-mannitolanalysis.Steam‐girdlingofbarley(Hordeumvulgare)leavesleadstocarbohydrateaccumulationandacceleratedleafsenescence,facilitatingtranscriptomicanalysisofsenescence‐associatedgenes.Parrott,D.L.,McInnerney,K.,Feller,U.&Fischer,A.M.(2007).NewPhytologist,176(1),56-69.LinktoArticleReadAbstract• Leafsenescencecanbedescribedasthedismantlingofcellularcomponentsduringaspecifictimeintervalbeforecelldeath.ThishastheeffectofremobilizingNintheformofaminoacidsthatcanberelocalizedtodevelopingseeds.Highlevelsofcarbohydrateshavepreviouslybeenshowntopromotetheonsetofthesenescenceprocess.• Carbohydrateaccumulationinbarley(Hordeumvulgare)plantswasinducedexperimentallybysteam-girdlingattheleafbase,occludingthephloem,andgeneregulationundertheseconditionswasinvestigatedusingtheAffymetrixBarleyGeneChiparrayandquantitativereal-timereversetranscriptasepolymerasechainreaction(qRT-PCR).• Transcriptlevelsofplastidial(aminopeptidases,cnd41)andvacuolar(thiolandserine)proteasesclearlyincreaseingirdledleaves.Ofspecialinterestarecnd41,aplastidialaspartylpeptidasethathasbeenimplicatedinRubiscodegradationintobacco;andcp-mIII,ahighlyupregulatedcarboxypeptidase.SAG12,hexokinasesandothersenescence-specificgenesarealsoupregulatedundertheseconditions.• Applyingagenomicapproachtotheinnovativeexperimentalsystemdescribedheresignificantlyenhancesourknowledgeofleafproteolysisandwhole-plantNrecycling.Reroutingcarbonfluxtoenhancephotosyntheticproductivity.Ducat,D.C.,Avelar-Rivas,J.A.,Way,J.C.&Silver,P.A.(2012).AppliedandEnvironmentalMicrobiology,78(8),2660-2668.LinktoArticleReadAbstractThebioindustrialproductionoffuels,chemicals,andtherapeuticstypicallyreliesuponcarbohydrateinputsderivedfromagriculturalplants,resultingintheentanglementoffoodandchemicalcommoditymarkets.Wedemonstratetheefficientproductionofsucrosefromacyanobacterialspecies,Synechococcuselongatus,heterologouslyexpressingasymporterofprotonsandsucrose(cscB).cscB-expressingcyanobacteriaexportsucroseirreversiblytoconcentrationsof>10mMwithoutculturetoxicity.Moreover,sucrose-exportingcyanobacteriaexhibitincreasedbiomassproductionratesrelativetowild-typestrains,accompaniedbyenhancedphotosystemIIactivity,carbonfixation,andchlorophyllcontent.Thegeneticmodificationofsucrosebiosynthesispathwaystominimizecompetingglucose-orsucrose-consumingreactionscanfurtherimprovesucroseproduction,allowingtheexportofsucroseatratesofupto36.1mgliter-1hIllumination-1.Thisrateofproductionexceedsthatofpreviousreportsoftargeted,photobiologicalproductionfrommicrobes.EngineeredS.elongatusproducessucroseinsufficientquantities(upto~80%oftotalbiomass)suchthatitmaybeaviablealternativetosugarsynthesisfromterrestrialplants,includingsugarcane.RapidquantifiableassessmentofnutritionalparametersinfluencingpediocinproductionbyPediococcusacidilacticiNRRLB5627.Anastasiadou,S.,Papagianni,M.,Ambrosiadis,I.&Koidis,P.(2008).BioresourceTechnology,99(14),6646-6650.LinktoArticleReadAbstractAdirectplatebioassayprocedurewasappliedforrapidandquantifiableassessmentoftheinfluenceofvariousnutritionalparametersonpediocinproductionbyPediococcusacidilacticiNRRLB5627.Solid-statecultivationofthemicroorganismwasdoneonMRS-basedmediaover3-and6-hoursincubationperiods.Nutritionalparametersassessedincludedthecarbonsource(glucose,sucrose,fructose,galactose,glycerol),andvarioussalts(NH4PO4,CaCl2,KH2PO4,MnSO4•H2O).Glucosewasfoundtobetheoptimalcarbonsourcewhileglycerolexhibitedthemostsuppressiveeffect.Usingglucoseasthecarbonsource,additionofvarioussalts,inamountsusedinliquidmediacommonlyappliedinthecultivationofthepediococci,wasassessedwithrespecttobacteriocinproductiononapercellbasis.ExperimentaldataobtainedshowedthatseveralnutritionalparametersrepresspediocinproductionbyP.acidilactici,whilethedirectplateassayprovedtobeagoodpilotassaypriortoconductingmoreintensivekineticanalysisinliquidcultivation.Composition,invitrodigestibility,andsensoryevaluationofextrudedwholegrainsorghumbreakfastcereals.Mkandawire,N.L.,Weier,S.A.,Weller,C.L.,Jackson,D.S.&Rose,D.J.(2015).LWT-FoodScienceandTechnology,62(1),662-667.LinktoArticleReadAbstractTwosorghumgenotypes(red,tannin;white,non-tannin),wereevaluatedfortheirpotentialuseinbreakfastcereals.Twolevelsofwholegrainsorghumflour(550 g/kgdrymixor700 g/kgdrymix)wereprocessedpergenotypeusingapilot-scale,twinscrewextruder.Awholegrainoat-basedcerealwasusedasareference.Whitesorghumcereals(WSC)hadsignificantly(p EvaluationofsugarcontentinpotatoesusingNIRreflectanceandwavelengthselectiontechniques.Rady,A.M.&Guyer,D.E.(2015).PostharvestBiologyandTechnology,103,17-26.LinktoArticleReadAbstractNear-infrared(NIR)diffusereflectancehasbeenextensivelyandsuccessfullyappliedonqualityassuranceforfruits,vegetables,andfoodproducts.Thisstudyisprincipallyaimedtoextracttheprimarywavelengthsrelatedtothepredictionofglucoseandsucroseforpotatotubers(ofFritoLay1879(FL),achippingcultivar,andRussetNorkotah(RN),atableusecultivar,andinvestigatingthepotentialofclassificationofpotatoesbasedonsugarlevelsimportanttothefryingindustry.Wholetubers,aswellas12.7 mmslices,werescannedusingaNIRreflectancespectroscopicsystem(900–1685 nm).Toextractthemostinfluentialwavelengthinthestudiedrange,intervalpartialleastsquares(IPLS),andgeneticalgorithm(GA)wereutilized.Partialleastsquaresregression(PLSR)wasappliedforbuildingpredictionmodels.PredictionmodelsforRNshowedstrongercorrelationthanFLwithr(RPD)(correlationcoefficient(ratioofreferencestandarddeviationtorootmeansquareerrorofthemodel))valuesforwholetubersforglucosebeingashighas0.81(1.70),and0.97(3.91)forFLandRN;inthecaseofslicedsamplesthevalueswere0.74(1.49)and0.94(2.73)forFLandRN.Lowercorrelationwasobtainedforsucrosewithr(RPD)forwholetubersashighas0.75(1.52),0.92(2.57)forFLandRN;andthevaluesforslicedsampleswere0.67(1.31)and0.75(1.41)forFLandRNrespectively.Classificationofpotatoesbasedonsugarlevelswasconductedandtrainingmodelswerebuiltusingdifferentclassifiers(lineardiscriminantanalysis(LDA),K-nearestneighbor(Knn),partialleastsquaresdiscriminantanalysis(PLSDA),andartificialneuralnetwork(ANN)),inadditiontoclassifierfusion.Toobtainmorerobustclassificationmodelsforthetrainingdata,4-foldcrossvalidationwasusedandresultsweretestedusingseparatesetsofdata.Classificationratesofthetestingsetforwholetubers,basedonglucose,wereashighas81%and100%forFLandRN.Forslicedsamples,therateswere83%and81%forFLandRN.Generally,lowerclassificationrateswereobtainedbasedonsucrosewithvaluesofwholetubersof71%,and79%forFLandRN,andforslicedsamplestherateswere75%,and82%whichfollowsasimilartrendasPLSRresults.ThisstudypresentsapotentialofusingselectedwavelengthsandNIRreflectancespectroscopytoeffectivelyevaluatethesugarcontentofpotatoesandclassifypotatoesbasedonthresholdsthatarecrucialforthefryingindustry.Asynthetic,light-drivenconsortiumofcyanobacteriaandheterotrophicbacteriaenablesstablepolyhydroxybutyrateproduction.Weiss,T.L.,Young,E.J.&Ducat,D.C.(2017).MetabolicEngineering,44,236-245.LinktoArticleReadAbstractWepreviouslyreportedthatSynechococcuselongatusPCC7942,engineeredwiththesucrosetransporterCscB,canexportupto85%ofitsphotosynthetically-fixedcarbonassucroseandshowsconsiderablepromiseasanalternativecarbohydratesource.Oneapproachtoeffectivelyutilizethiscyanobacteriumistogeneratesynthetic,light-drivenconsortiainwhichsucrose-metabolizingheterotrophscatalyzetheconversionofthelow-valuecarbohydrateintohigher-valuecompoundsinco-culture.Here,wereportanimprovedsyntheticphotoautotroph/chemoheterotrophconsortialdesigninwhichsucrosesecretedbyS.elongatusCscBdirectlysupportsthebacteriumHalomonasboliviensis,anaturalproducerofthebioplasticprecursor,PHB.WeshowthatalginateencapsulationofS.elongatusCscBenhancessucrose-exportrates~2-foldwithin66h,to~290mgsucroseL-1d-1OD750-1andenhancestheco-culturestABIlity.ConsortialH.boliviensisaccumulateupto31%oftheirdry-weightasPHB,reachingproductivitiesupto28.3mgPHBL-1d-1.Thislight-driven,alginate-partitionedco-cultureplatformachievesPHBproductivitiesthatmatchorexceedthoseoftraditionallyengineeredcyanobacterialmonocultures.Importantly,S.elongatusCscB/H.boliviensisco-cultureswerecontinuouslyproductiveforover5monthsandresistedinvasivemicrobialspecieswithouttheapplicationofantibioticsorotherchemicalselectionagents.ColourimetricmethodforthedeterminationofSucroseandD-Glucoseinfoodstuffs,beveragesandothermaterialsPrinciple: (glucoseoxidase)(1)D-Glucose+H2O+O2→D-gluconate+H2O2 (peroxidase)(2)2H2O2+p-hydroxybenzoicacid+4-aminoantipyrine→ quinoneimine+4H2O (β-fructosidase)(3)Sucrose+H2O→D-glucose+D-fructoseKitsize: 250assaysMethod: Spectrophotometricat510nmReactiontime: ~30minDetectionlimit: 100mg/LApplicationexamples:Beer,fruitjuices,softdrinks,coffee,milk,jam,honey,dieteticfoods,bread,bakeryproducts,candies,chocolate,desserts,confectionery,ice-cream,fruitandvegetables,condiments,tobacco,cosmetics,pharmaceuticals,paperandothermaterials(e.g.biologicalcultures,samples,etc.)Methodrecognition: UsedandacceptedinfoodanalysisAdvantagesVerycompetitiveprice(costpertest) Allreagentsstablefor>12monthsafterpreparation Simpleformat Mega-Calc™softwaretoolisavailablefromourwebsiteforhassle-freerawdataprocessing Standardincluded
Megazyme品牌产品简介

Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
Megazyme的主要产品线包括:

◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号 | 中文品名 | 用途 |
K-ACETAF | 乙酸[AF法]检测试剂盒 | 酶法定量分析乙酸最广泛使用的方法 |
K-ACHDF | 可吸收糖/膳食纤维检测试剂盒 | 酒精沉淀法测定膳食纤维 |
K-AMIAR | 氨快速检测试剂盒 | 用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。 |
K-AMYL | 直链淀粉/支链淀粉检测试剂盒 | 谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测 |
K-ARAB | 阿拉伯聚糖检测试剂盒 | 果汁浓缩液中阿拉伯聚糖的检测 |
K-ASNAM | L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒 | 用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析 |
K-ASPTM | 阿斯巴甜检测试剂盒 | 专业用于测定饮料和食品中阿斯巴甜含量,操作简单 |
K-BETA3 | β-淀粉酶检测试剂盒 | 适用于麦芽粉中β-淀粉酶的测定 |
K-BGLU | 混合键β-葡聚糖检测试剂盒 | 测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量 |
K-CERA | α-淀粉酶检测试剂盒 | 谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定 |
K-CITR | 柠檬酸检测试剂盒 | 快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量 |
K-DLATE | 乳酸快速检测试剂盒 | 快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量 |
K-EBHLG | 酵母β-葡聚糖酶检测试剂盒 | 用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖 |
K-ETSULPH | 总亚硫酸检测试剂盒 | 测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法 |
K-FRGLMQ | D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒 | 适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。 |
K-FRUC | 果聚糖检测试剂盒 | 含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。 |
K-FRUGL | D-果糖/D-葡萄糖检测试剂盒 | 对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。 |
K-GALM | 半乳甘露聚糖检测试剂盒 | 食品和植物产品中半乳甘露聚糖的含量检测 |
K-GLUC | D-葡萄糖[GOPOD]检测试剂盒 | 谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。 |
K-GLUHK | D-葡萄糖[HK]检测试剂盒 | 植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。 |
K-GLUM | 葡甘聚糖检测试剂盒 | 植物和食品中葡甘聚糖的含量测定。 |
K-INTDF | 总膳食纤维检测试剂盒 | 总膳食纤维特定检测和分析 |
K-LACGAR | 乳糖/D-半乳糖快速检测试剂盒 | 用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖 |
K-LACSU | 乳糖/蔗糖/D-葡萄糖检测试剂盒 | 混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定 |
K-LACTUL | 乳果糖检测试剂盒 | 特异性、快速和灵敏测量奶基样品中乳果糖含量 |
K-MANGL | D-甘露糖/D-果糖/D-葡萄糖检测试剂盒 | 适合测定植物产品和多糖酸性水解产物中D-甘露糖含量 |
K-MASUG | 麦芽糖/蔗糖/D-葡萄糖检测试剂盒 | 在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测 |
K-PECID | 胶质识别检测试剂盒 | 食品配料中果胶的鉴别 |
K-PHYT | 植酸(总磷)检测试剂盒 | 食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析 |
K-PYRUV | 丙酮酸检测试剂盒 | 在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析 |
K-RAFGA | 棉子糖/D-半乳糖检测试剂盒 | 快速测量植物材料和食品中棉子糖和半乳糖含量 |
K-RAFGL | 棉子糖/蔗糖/D-半乳糖检测试剂盒 | 分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定 |
K-SDAM | 淀粉损伤检测试剂盒 | 谷物面粉中淀粉损伤的检测和分析 |
K-SUCGL | 蔗糖/D-葡萄糖检测试剂盒 | 饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析 |
K-SUFRG | 蔗糖/D-果糖/D-葡萄糖检测试剂盒 | 适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定 |
K-TDFR | 总膳食纤维检测试剂盒 | 总膳食纤维检测 |
K-TREH | 海藻糖检测试剂盒 | 快速、可靠地检测食品、饮料和其它物料中海藻糖含量 |
K-URAMR | 尿素/氨快速检测试剂盒 | 适用于水、饮料、乳制品和食品中尿素和氨的快速测定 |
K-URONIC | D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒 | 简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸) |
K-XYLOSE | D-木糖检测试剂盒 | 简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量 |
K-YBGL | Beta葡聚糖[酵母和蘑菇]检测试剂盒 | 检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量 |
新品排行榜
1
Megazyme/Amyloglucosidase (Asper...
2
Megazyme/α-Amylase (Bacill...
3
Megazyme/Arabinoxylan (Wheat Flo...
4
Megazyme/D-Xylose Assay Kit/K-XY...
5
Megazyme/MegaQuant Colorimeter T...
6
Megazyme/Wheat Arabinoxylan (enz...
7
Megazyme/Cellazyme C Tablets/T-C...
8
Megazyme/Amyloglucosidase (Asper...
9
Megazyme/Amylazyme HY Tablets/T-...
10
Megazyme/CM-Pachyman/P-CMPAC/4 g...
文章排行榜
1
Megazyme/Total Starch Assay Kit (AA/AMG) /K-TSTA-100A/100 assays
2
膳食纤维总量检测试剂盒
3
K-TSTA,淀粉总量检测试剂盒,Total Starch (AA/AMG) Assay Kit
4
Megazyme/Phytic Acid (Total Phosphorus) Assay Kit/K-PHYT/50 assays per kit
5
Megazyme/Protease (Subtilisin A from Bacillus licheniformis)/E-BSPRT-10ML/0.5 grams - 10ML
6
Megazyme/AZCL-Pachyman/I-AZPAC/3 grams
7
Megazyme/AZCL-Curdlan (fine)/I-AZCURF/3 grams
8
Megazyme/Total Dietary Fiber Controls/K-TDFC/Sufficient for 6 Controls
9
Bit_试剂_Equl意果_易扩_AdvancedBioMatrix_DivBio_Drummond_Genie_Glascol_Megazyme_Phadebas_Worthington
10
Harlan Bioproducts_试剂_Equl意果_易扩_AdvancedBioMatrix_DivBio_Drummond_Genie_Glascol_Megazyme_Phadebas_Worthington