提醒:代购产品,无质量问题不接受退换货,下单前请仔细核对信息。下单后请及时联系客服 核对商品价格,订单生效后再付款。
Megazyme/Sucrose/D-Glucose Assay Kit/K-SUCGL/250 assays per kit
价格:

自营商城

解放采购

正品保障

及时交付

厂家直采

一站服务

货号:
品牌:
会员服务:
尊享会员价
贵宾专线
运费优惠
闪电退款
福利优惠
上门换新
友情提示
以上价格仅为参考,请联系客服询价。
免费咨询热线
4000-520-616
产品说明
TheSucrose/D-GlucosetestkitissuitableforthemeasurementandanalysisofsucroseandD-glucoseinfruitjuice,beverages,honeyandfoodproducts.Grapeandwineanalysis:Oenologiststoexploitadvancedtestkits.Charnock,S.C.&McCleary,B.V.(2005).RevuedesEnology,117,1-5.LinktoArticleReadAbstractItiswithoutdoubtthattestingplaysapivotalrolethroughoutthewholeofthevinificationprocess.ToproducethebestpossIBLequalitywineandtominimiseprocessproblemssuchas“stuck”fermentationortroublesomeinfections,itisnowrecognisedthatifpossibletestingshouldbeginpriortoharvestingofthegrapesandcontinuethroughtobottling.TrADItionalmethodsofwineanalysisareoftenexpensive,timeconsuming,requireeitherelaborateequipmentorspecialistexpertiseandfrequentlylackaccuracy.However,enzymaticbio-analysisenablestheaccuratemeasurementofthevastmajorityofanalytesofinteresttothewinemaker,usingjustonepieceofapparatus,thespectrophotometer(seepreviousissueNo.116foradetailedtechnicalreview).Grapejuiceandwineareamenabletoenzymatictestingasbeingliquidstheyarehomogenous,easytomanipulate,andcangenerallybeanalysedwithoutanysamplepreparation.Megazyme“advanced”winetestkitsgeneralcharacteristicsandvalidation.Charnock,S.J.,McCleary,B.V.,Daverede,C.&Gallant,P.(2006).ReveuedesOenologues,120,1-5.LinktoArticleReadAbstractManyoftheenzymatictestkitsareofficialmethodsofprestigiousorganisationssuchastheAssociationofOfficialAnalyticalChemicals(AOAC)andtheAmericanAssociationofCerealChemists(AACC)inresponsetotheinterestfromoenologists.Megazymedecidedtouseitslonghistoryofenzymaticbio-analysistomakeasignificantcontributiontothewineindustry,bythedevelopmentofarangeofadvancedenzymatictestkits.Thistaskhasnowbeensuccessfullycompletedthroughthestrategicandcomprehensiveprocessofidentifyinglimitationsofexistingenzymaticbio-analysistestkitswheretheyoccurred,andthenusingadvancedtechniques,suchasmolecularBIOLOGy(photo1),torapidlyovercomethem.Noveltestkitshavealsobeendevelopedforanalytesofemerginginteresttotheoenologist,suchasyeastavailablenitrogen(YAN;seepages2-3ofissue117article),orwherepreviouslyenzymesweresimplyeithernotavailable,orweretooexpensivetoemploy,suchasforD-mannitolanalysis.Steam‐girdlingofbarley(Hordeumvulgare)leavesleadstocarbohydrateaccumulationandacceleratedleafsenescence,facilitatingtranscriptomicanalysisofsenescence‐associatedgenes.Parrott,D.L.,McInnerney,K.,Feller,U.&Fischer,A.M.(2007).NewPhytologist,176(1),56-69.LinktoArticleReadAbstract• Leafsenescencecanbedescribedasthedismantlingofcellularcomponentsduringaspecifictimeintervalbeforecelldeath.ThishastheeffectofremobilizingNintheformofaminoacidsthatcanberelocalizedtodevelopingseeds.Highlevelsofcarbohydrateshavepreviouslybeenshowntopromotetheonsetofthesenescenceprocess.• Carbohydrateaccumulationinbarley(Hordeumvulgare)plantswasinducedexperimentallybysteam-girdlingattheleafbase,occludingthephloem,andgeneregulationundertheseconditionswasinvestigatedusingtheAffymetrixBarleyGeneChiparrayandquantitativereal-timereversetranscriptasepolymerasechainreaction(qRT-PCR).• Transcriptlevelsofplastidial(aminopeptidases,cnd41)andvacuolar(thiolandserine)proteasesclearlyincreaseingirdledleaves.Ofspecialinterestarecnd41,aplastidialaspartylpeptidasethathasbeenimplicatedinRubiscodegradationintobacco;andcp-mIII,ahighlyupregulatedcarboxypeptidase.SAG12,hexokinasesandothersenescence-specificgenesarealsoupregulatedundertheseconditions.• Applyingagenomicapproachtotheinnovativeexperimentalsystemdescribedheresignificantlyenhancesourknowledgeofleafproteolysisandwhole-plantNrecycling.Reroutingcarbonfluxtoenhancephotosyntheticproductivity.Ducat,D.C.,Avelar-Rivas,J.A.,Way,J.C.&Silver,P.A.(2012).AppliedandEnvironmentalMicrobiology,78(8),2660-2668.LinktoArticleReadAbstractThebioindustrialproductionoffuels,chemicals,andtherapeuticstypicallyreliesuponcarbohydrateinputsderivedfromagriculturalplants,resultingintheentanglementoffoodandchemicalcommoditymarkets.Wedemonstratetheefficientproductionofsucrosefromacyanobacterialspecies,Synechococcuselongatus,heterologouslyexpressingasymporterofprotonsandsucrose(cscB).cscB-expressingcyanobacteriaexportsucroseirreversiblytoconcentrationsof>10mMwithoutculturetoxicity.Moreover,sucrose-exportingcyanobacteriaexhibitincreasedbiomassproductionratesrelativetowild-typestrains,accompaniedbyenhancedphotosystemIIactivity,carbonfixation,andchlorophyllcontent.Thegeneticmodificationofsucrosebiosynthesispathwaystominimizecompetingglucose-orsucrose-consumingreactionscanfurtherimprovesucroseproduction,allowingtheexportofsucroseatratesofupto36.1mgliter-1hIllumination-1.Thisrateofproductionexceedsthatofpreviousreportsoftargeted,photobiologicalproductionfrommicrobes.EngineeredS.elongatusproducessucroseinsufficientquantities(upto~80%oftotalbiomass)suchthatitmaybeaviablealternativetosugarsynthesisfromterrestrialplants,includingsugarcane.RapidquantifiableassessmentofnutritionalparametersinfluencingpediocinproductionbyPediococcusacidilacticiNRRLB5627.Anastasiadou,S.,Papagianni,M.,Ambrosiadis,I.&Koidis,P.(2008).BioresourceTechnology,99(14),6646-6650.LinktoArticleReadAbstractAdirectplatebioassayprocedurewasappliedforrapidandquantifiableassessmentoftheinfluenceofvariousnutritionalparametersonpediocinproductionbyPediococcusacidilacticiNRRLB5627.Solid-statecultivationofthemicroorganismwasdoneonMRS-basedmediaover3-and6-hoursincubationperiods.Nutritionalparametersassessedincludedthecarbonsource(glucose,sucrose,fructose,galactose,glycerol),andvarioussalts(NH4PO4,CaCl2,KH2PO4,MnSO4•H2O).Glucosewasfoundtobetheoptimalcarbonsourcewhileglycerolexhibitedthemostsuppressiveeffect.Usingglucoseasthecarbonsource,additionofvarioussalts,inamountsusedinliquidmediacommonlyappliedinthecultivationofthepediococci,wasassessedwithrespecttobacteriocinproductiononapercellbasis.ExperimentaldataobtainedshowedthatseveralnutritionalparametersrepresspediocinproductionbyP.acidilactici,whilethedirectplateassayprovedtobeagoodpilotassaypriortoconductingmoreintensivekineticanalysisinliquidcultivation.Composition,invitrodigestibility,andsensoryevaluationofextrudedwholegrainsorghumbreakfastcereals.Mkandawire,N.L.,Weier,S.A.,Weller,C.L.,Jackson,D.S.&Rose,D.J.(2015).LWT-FoodScienceandTechnology,62(1),662-667.LinktoArticleReadAbstractTwosorghumgenotypes(red,tannin;white,non-tannin),wereevaluatedfortheirpotentialuseinbreakfastcereals.Twolevelsofwholegrainsorghumflour(550 g/kgdrymixor700 g/kgdrymix)wereprocessedpergenotypeusingapilot-scale,twinscrewextruder.Awholegrainoat-basedcerealwasusedasareference.Whitesorghumcereals(WSC)hadsignificantly(p EvaluationofsugarcontentinpotatoesusingNIRreflectanceandwavelengthselectiontechniques.Rady,A.M.&Guyer,D.E.(2015).PostharvestBiologyandTechnology,103,17-26.LinktoArticleReadAbstractNear-infrared(NIR)diffusereflectancehasbeenextensivelyandsuccessfullyappliedonqualityassuranceforfruits,vegetables,andfoodproducts.Thisstudyisprincipallyaimedtoextracttheprimarywavelengthsrelatedtothepredictionofglucoseandsucroseforpotatotubers(ofFritoLay1879(FL),achippingcultivar,andRussetNorkotah(RN),atableusecultivar,andinvestigatingthepotentialofclassificationofpotatoesbasedonsugarlevelsimportanttothefryingindustry.Wholetubers,aswellas12.7 mmslices,werescannedusingaNIRreflectancespectroscopicsystem(900–1685 nm).Toextractthemostinfluentialwavelengthinthestudiedrange,intervalpartialleastsquares(IPLS),andgeneticalgorithm(GA)wereutilized.Partialleastsquaresregression(PLSR)wasappliedforbuildingpredictionmodels.PredictionmodelsforRNshowedstrongercorrelationthanFLwithr(RPD)(correlationcoefficient(ratioofreferencestandarddeviationtorootmeansquareerrorofthemodel))valuesforwholetubersforglucosebeingashighas0.81(1.70),and0.97(3.91)forFLandRN;inthecaseofslicedsamplesthevalueswere0.74(1.49)and0.94(2.73)forFLandRN.Lowercorrelationwasobtainedforsucrosewithr(RPD)forwholetubersashighas0.75(1.52),0.92(2.57)forFLandRN;andthevaluesforslicedsampleswere0.67(1.31)and0.75(1.41)forFLandRNrespectively.Classificationofpotatoesbasedonsugarlevelswasconductedandtrainingmodelswerebuiltusingdifferentclassifiers(lineardiscriminantanalysis(LDA),K-nearestneighbor(Knn),partialleastsquaresdiscriminantanalysis(PLSDA),andartificialneuralnetwork(ANN)),inadditiontoclassifierfusion.Toobtainmorerobustclassificationmodelsforthetrainingdata,4-foldcrossvalidationwasusedandresultsweretestedusingseparatesetsofdata.Classificationratesofthetestingsetforwholetubers,basedonglucose,wereashighas81%and100%forFLandRN.Forslicedsamples,therateswere83%and81%forFLandRN.Generally,lowerclassificationrateswereobtainedbasedonsucrosewithvaluesofwholetubersof71%,and79%forFLandRN,andforslicedsamplestherateswere75%,and82%whichfollowsasimilartrendasPLSRresults.ThisstudypresentsapotentialofusingselectedwavelengthsandNIRreflectancespectroscopytoeffectivelyevaluatethesugarcontentofpotatoesandclassifypotatoesbasedonthresholdsthatarecrucialforthefryingindustry.Asynthetic,light-drivenconsortiumofcyanobacteriaandheterotrophicbacteriaenablesstablepolyhydroxybutyrateproduction.Weiss,T.L.,Young,E.J.&Ducat,D.C.(2017).MetabolicEngineering,44,236-245.LinktoArticleReadAbstractWepreviouslyreportedthatSynechococcuselongatusPCC7942,engineeredwiththesucrosetransporterCscB,canexportupto85%ofitsphotosynthetically-fixedcarbonassucroseandshowsconsiderablepromiseasanalternativecarbohydratesource.Oneapproachtoeffectivelyutilizethiscyanobacteriumistogeneratesynthetic,light-drivenconsortiainwhichsucrose-metabolizingheterotrophscatalyzetheconversionofthelow-valuecarbohydrateintohigher-valuecompoundsinco-culture.Here,wereportanimprovedsyntheticphotoautotroph/chemoheterotrophconsortialdesigninwhichsucrosesecretedbyS.elongatusCscBdirectlysupportsthebacteriumHalomonasboliviensis,anaturalproducerofthebioplasticprecursor,PHB.WeshowthatalginateencapsulationofS.elongatusCscBenhancessucrose-exportrates~2-foldwithin66h,to~290mgsucroseL-1d-1OD750-1andenhancestheco-culturestABIlity.ConsortialH.boliviensisaccumulateupto31%oftheirdry-weightasPHB,reachingproductivitiesupto28.3mgPHBL-1d-1.Thislight-driven,alginate-partitionedco-cultureplatformachievesPHBproductivitiesthatmatchorexceedthoseoftraditionallyengineeredcyanobacterialmonocultures.Importantly,S.elongatusCscB/H.boliviensisco-cultureswerecontinuouslyproductiveforover5monthsandresistedinvasivemicrobialspecieswithouttheapplicationofantibioticsorotherchemicalselectionagents.ColourimetricmethodforthedeterminationofSucroseandD-Glucoseinfoodstuffs,beveragesandothermaterialsPrinciple:                (glucoseoxidase)(1)D-Glucose+H2O+O2→D-gluconate+H2O2                                          (peroxidase)(2)2H2O2+p-hydroxybenzoicacid+4-aminoantipyrine→                                  quinoneimine+4H2O           (β-fructosidase)(3)Sucrose+H2O→D-glucose+D-fructoseKitsize:                         250assaysMethod:                           Spectrophotometricat510nmReactiontime:                 ~30minDetectionlimit:                100mg/LApplicationexamples:Beer,fruitjuices,softdrinks,coffee,milk,jam,honey,dieteticfoods,bread,bakeryproducts,candies,chocolate,desserts,confectionery,ice-cream,fruitandvegetables,condiments,tobacco,cosmetics,pharmaceuticals,paperandothermaterials(e.g.biologicalcultures,samples,etc.)Methodrecognition:   UsedandacceptedinfoodanalysisAdvantagesVerycompetitiveprice(costpertest) Allreagentsstablefor>12monthsafterpreparation Simpleformat Mega-Calc™softwaretoolisavailablefromourwebsiteforhassle-freerawdataprocessing Standardincluded

Megazyme品牌产品简介

来源:作者:人气:2149发表时间:2016-05-19 10:59:00【  
Megazyme检测试剂盒 - 用于食品、饲料、乳制品、葡萄酒分析
Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
Megazyme检测试剂盒产品◆ 检测试剂盒
◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号 中文品名 用途
K-ACETAF 乙酸[AF法]检测试剂盒 酶法定量分析乙酸最广泛使用的方法
K-ACHDF 可吸收糖/膳食纤维检测试剂盒 酒精沉淀法测定膳食纤维
K-AMIAR 氨快速检测试剂盒 用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。
K-AMYL 直链淀粉/支链淀粉检测试剂盒 谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测
K-ARAB 阿拉伯聚糖检测试剂盒 果汁浓缩液中阿拉伯聚糖的检测
K-ASNAM L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒 用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析
K-ASPTM 阿斯巴甜检测试剂盒 专业用于测定饮料和食品中阿斯巴甜含量,操作简单
K-BETA3 β-淀粉酶检测试剂盒 适用于麦芽粉中β-淀粉酶的测定
K-BGLU 混合键β-葡聚糖检测试剂盒 测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量
K-CERA α-淀粉酶检测试剂盒 谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定
K-CITR 柠檬酸检测试剂盒 快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量
K-DLATE 乳酸快速检测试剂盒 快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量
K-EBHLG 酵母β-葡聚糖酶检测试剂盒 用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖
K-ETSULPH 总亚硫酸检测试剂盒 测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法
K-FRGLMQ D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒 适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。
K-FRUC 果聚糖检测试剂盒 含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。
K-FRUGL D-果糖/D-葡萄糖检测试剂盒 对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。
K-GALM 半乳甘露聚糖检测试剂盒 食品和植物产品中半乳甘露聚糖的含量检测
K-GLUC D-葡萄糖[GOPOD]检测试剂盒 谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUHK D-葡萄糖[HK]检测试剂盒 植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUM 葡甘聚糖检测试剂盒 植物和食品中葡甘聚糖的含量测定。
K-INTDF 总膳食纤维检测试剂盒 总膳食纤维特定检测和分析
K-LACGAR 乳糖/D-半乳糖快速检测试剂盒 用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖
K-LACSU 乳糖/蔗糖/D-葡萄糖检测试剂盒 混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定
K-LACTUL 乳果糖检测试剂盒 特异性、快速和灵敏测量奶基样品中乳果糖含量
K-MANGL D-甘露糖/D-果糖/D-葡萄糖检测试剂盒 适合测定植物产品和多糖酸性水解产物中D-甘露糖含量
K-MASUG 麦芽糖/蔗糖/D-葡萄糖检测试剂盒 在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测
K-PECID 胶质识别检测试剂盒 食品配料中果胶的鉴别
K-PHYT 植酸(总磷)检测试剂盒 食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析
K-PYRUV 丙酮酸检测试剂盒 在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析
K-RAFGA 棉子糖/D-半乳糖检测试剂盒 快速测量植物材料和食品中棉子糖和半乳糖含量
K-RAFGL 棉子糖/蔗糖/D-半乳糖检测试剂盒 分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定
K-SDAM 淀粉损伤检测试剂盒 谷物面粉中淀粉损伤的检测和分析
K-SUCGL 蔗糖/D-葡萄糖检测试剂盒 饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析
K-SUFRG 蔗糖/D-果糖/D-葡萄糖检测试剂盒 适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定
K-TDFR 总膳食纤维检测试剂盒 总膳食纤维检测
K-TREH 海藻糖检测试剂盒 快速、可靠地检测食品、饮料和其它物料中海藻糖含量
K-URAMR 尿素/氨快速检测试剂盒 适用于水、饮料、乳制品和食品中尿素和氨的快速测定
K-URONIC D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒 简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸)
K-XYLOSE D-木糖检测试剂盒 简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量
K-YBGL Beta葡聚糖[酵母和蘑菇]检测试剂盒 检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量
客服在线
service-logo
已有 人查看该问题
tel
全国免费服务热线
4000-520-616
微信公众号
关注我们
手机扫码,关注动态