提醒:代购产品,无质量问题不接受退换货,下单前请仔细核对信息。下单后请及时联系客服 核对商品价格,订单生效后再付款。
Megazyme/Trehalose Assay Kit/K-TREH/100 assays (manual) / 1000 assays (microplate) / 1100 assays (auto-analyser)
价格:

自营商城

解放采购

正品保障

及时交付

厂家直采

一站服务

货号:
品牌:
会员服务:
尊享会员价
贵宾专线
运费优惠
闪电退款
福利优惠
上门换新
友情提示
以上价格仅为参考,请联系客服询价。
免费咨询热线
4000-520-616
产品说明
TheTrehalosetestkitisasimplemethodfortherapidandreliablemeasurementandanalysisoftrehaloseinfoods,beveragesandothermaterials.Suitableformanual,auto-analyserandmicroplateformats.Improvementoftolerancetofreeze–thawstressofbaker’syeastbycultivationwithsoypeptides.Izawa,S.,Ikeda,K.,Takahashi,N.&Inoue,Y.(2007).AppliedMicroBIOLOGyandBiotechnology,75(3),533-537.LinktoArticleReadAbstractThetolerancetofreeze–thawstressofyeastcellsiscriticalforfrozen-doughtechnologyinthebakingindustry.Inthisstudy,weexaminedtheeffectsofsoypeptidesonthefreeze–thawstresstoleranceofyeastcells.Wefoundthatthecellsculturedwithsoypeptidesacquiredimprovedtolerancetofreeze–thawstressandretainedhighleaveningABIlityindoughafterfrozenstoragefor7days.Thefinalqualityofbreadregardingitsvolumeandtexturewasalsoimprovedbyusingyeastcellsculturedwithsoypeptides.Thesefindingspromotetheutilizationofsoypeptidesasingredientsofculturemediatoimprovethequalityofbaker’syeast.Starvationresistanceandeffectsofdietonenergyreservesinapredatorygroundbeetle(MerizodussoledADInus;Carabidae)invadingtheKerguelenIslands.Laparie,M.,Larvor,V.,Frenot,Y.&Renault,D.(2012).ComparativeBiochemistryandPhysiologyPartA:Molecular&IntegrativePhysiology,161(2),122-129.LinktoArticleReadAbstractTherelationshipbetweennutritionalrequirementsandtheavailabilityorqualityoffoodisaprimeparameterindeterminingthegeographicalexpansionofinvasiveinsects.Atthesub-AntarcticKerguelenIslands,theinvasivegroundbeetleMerizodussoledadinusbecomesthemaininvertebratepredatorwhenitcolonizesnewhabitats,leadingtothelocalextinctionofnativeflyspecies.Suchchangesinthestructureofpreycommunitiesmayaltertheenergymanagement(storageandexpenditure)ofthispredator.Inthisspecies,wemonitoredsurvivalandbodymassduringfooddeprivation,inadditiontoevaluatingtheeffectsoftwodistinctdiets(maggotsversusenchytraeids)ontheconsumptionandrestorationofbodyreserves(sugarsandtriglycerides).Wefoundthatadultscanstarveformorethan60days,andfeedevery3.76daysonaveragewhenfoodisavailable.Werecordedhigherpredationratesonmaggots,associatedwithsteeperbodymassvariations,comparedtoenchytraeids.Sugarsandtriglyceridesweresignificantlyconsumedduringfooddeprivationandrestoredafterrefeeding,butvariedsimilarlyamongindividualssuppliedonthedistinctdiets.Otherparametersmaydeterminethefoodpreferencesobserved,suchassaltcontentinpreytissues,becauseM.soledadinusmainlyfeedsinhypersalineforeshorehabitats,andmaylimittheconsumptionofosmoticconformers.Freezingtoleranceandlowmolecularweightcryoprotectantsinaninvasiveparasiticfly,thedeerked(Lipoptenacervi).Nieminen,P.,Paakkonen,T.,Eerilä,H.,Puukka,K.,Riikonen,J.,Lehto,V.P.&Mustonen,A.M.(2012).JournalofExperimentalZoologyPartA:EcologicalGeneticsandPhysiology,317(1),1-8.LinktoArticleReadAbstractInsectcoldhardinessisoftenmediatedbylowmolecularweightcryoprotectants,suchassugars,polyols,andaminoacids(AA).Whilemanyfree-livingnortherninsectsmustcopewithextendedperiodsoffreezingambienttemperatures(Ta),theectoparasiticdeerkedLipoptenacerviimagocanencountersubfreezingTaonlyduringashortautumnalperiodbetweenhatchingandhostlocation.Subsequently,itbenefitsfromthebodytemperatureofthecervidhostforsurvivalinwinter.Thisstudyinvestigatedthecoldtoleranceofthespeciesbydeterminingitslowerlethaltemperature(100%mortality,LLT100)duringfasterandslowercoldacclimation,bydeterminingthesupercoolingpoint(SCP)andbymeasuringtheconcentrationsofpotentiallowmolecularweightcryoprotectants.TheLLT100ofthedeerkedwasapproximately−16°C,whichwouldenableittosurvivefreezingnighttimeTanotonlyinitscurrentareaofdistributionbutalsofurthernorth.TheSCPwas−7.8°C,clearlyhigherthantheLLT100,indicatingthatthedeerkeddisplaysfreezingtolerance.TheconcentrationsoffreeAA,especiallynonessentialAA,werehigherinthecold-acclimateddeerkedssimilartoseveralotherinsects.Theconcentrationsofprolineincreasedtogetherwithγ-aminobutyrate,arginine,asparagine,cystine,glutamate,glutamine,hydroxylysine,sarcosine,serine,andtaurine.AAcouldbehypothesizedtoactascryoprotectantsby,e.g.,protectingenzymesandlipidmembranesfromdamagecausedbycold.Anovelsteamedbreadmakingprocessusingsalt‐stressedbaker’syeast.Yeh,L.T.,Wu,M.L.,Charles,A.L.&Huang,T.C.(2009).InternationalJournalofFoodScience&Technology,44(12),2637-2643.LinktoArticleReadAbstractTheprocessofapplyingsalt-stressedbaker’syeastduringsouthernstyleChinesesteamedbreaddoughpreparationwasexamined.Baker’syeastwasstressedin7%saltsolutionthenmixedintodough,whichwasthenevaluatedfordoughfermentationproducinggas,doughexpansion,textureprofileanalysis(TPA),colour,specificvolume,spreadratioandsensoryanalysis.Theresultsofthisstudypointedoutsalt-stressedbaker’syeastproducedsignificantamountofgasanddoughexpansion,particularlyafter40minofsaltstressing.Thetextureofsteamedbreadwassofter(463.08g)thancontrol(541.35g)(P3g-1)thancontrol(2.89cm3g−1)(PPPDifferencesincoldanddroughttoleranceofhigharcticandsub-arcticpopulationsofMegaphoruraarcticaTullberg1876(Onychiuridae:Collembola).Bahrndorff,S.,Petersen,S.O.,Loeschcke,V.,Overgaard,J.&Holmstrup,M.(2007).Cryobiology,55(3),315-323.LinktoArticleReadAbstractThespringtailMegaphoruraarctica(Onychiuridae:Collembola)inhabitsthearcticandsub-arcticpartsofthenorthernhemispherewhereitonaseasonalbasiswillbeexposedtoseverecoldanddesiccatingconditions.InthepresentstudywecomparedhowtraitsofstressresistancedifferedbetweentwopopulationsofM.arcticathatwerecollectedatahigharcticsite(Spitsbergen)andasub-arcticsite(Akureyri,Iceland)withcontrastingthermalenvironments.InadditionweinvestigatedhowcoldanddesiccationaffectedthephospholipidfattyacidcompositionofM.arcticafromSpitsbergen.ThespringtailsfromSpitsbergenwerethemostcoldtolerantandthiswaslinkedtoanalmostthreetimeshigherleveloftrehaloseaccumulationduringcryoprotectivedehydration(15%and5%oftissuedryweightintheSpitsbergenandIcelandpopulations,respectively).AlthoughcryoprotectivedehydrationisintimatelyrelatedtodesiccationstressitwasshownthatM.arcticahadahighermortalitywhendehydratedoverice(−10or−20°C)thanwhendehydratedattemperaturesabove1°C.Thus,survivalwaslowerafterexposureto−10°Cthanafterexposuretoarelativehumidityof91.2%RHat+1°Calthoughbothtreatmentsledtothesamelevelofdehydration.Exposuretobothcold(−10and−20°C)anddesiccationat+1°Ccausedsignificantchangesinthephospholipidfattyacidcompositionwithsomesimilarities.Thesechangesincludedadecreaseinaveragechainlengthofthefattyacidsdueprimarilytoanincreaseinthephospholipidfattyacids16:0andadecreasein18:3and20:4ω6.TrehalosepromotesthesurvivalofSaccharomycescerevisiaeduringlethalethanolstress,butdoesnotinfluencegrowthundersublethalethanolstress.Bandara,A.,Fraser,S.,Chambers,P.J.&Stanley,G.A.(2009).FEMSYeastResearch,9(8),1208-1216.LinktoArticleReadAbstractTrehaloseisknowntoprotectcellsfromvariousenvironmentalassaults;however,itsroleintheethanoltoleranceofSaccharomycescerevisiaeremainscontroversial.Manypreviousstudiesreportcorrelationsbetweentrehaloselevelsandethanoltoleranceacrossavarietyofstrains,yetvariationsingeneticbackgroundmakeitdifficulttoseparatetheimpactoftrehalosefromotherstressresponsefactors.Inthecurrentstudy,investigationswereconductedontheethanoltoleranceofS.cerevisiaeBY4742andBY4742deletionstrains,tsl1Δandnth1Δ,acrossarangeofethanolconcentrations.Itwasfoundthattrehalosedoesplayaroleinethanoltoleranceatlethalethanolconcentrations,butnotatsublethalethanolconcentrations;differencesof20–40%intheintracellulartrehaloseconcentrationdidnotprovideanygrowthadvantageforcellsincubatedinthepresenceofsublethalethanolconcentrations.Itwasspeculatedthattheethanolconcentration-dependentnatureofthetrehaloseeffectsupportsamechanismfortrehaloseinprotectingcellularproteinsfromthedamagingeffectsofethanol.DivergentstrategiesforadaptationtodesiccationstressintwoDrosophilaspeciesofimmigransgroup.Parkash,R.,Aggarwal,D.D.,Ranga,P.&Singh,D.(2012).JournalofComparativePhysiologyB,182(6),751-769.LinktoArticleReadAbstractWaterbalancemechanismshavebeeninvestigatedindesertDrosophilaspeciesofthesubgenusDrosophilafromNorthAmerica,butchangesinmesicspeciesofsubgenusDrosophilafromothercontinentshavereceivedlesserattention.Wefounddivergentstrategiesforcopingwithdesiccationstressintwospeciesofimmigransgroup—D.immigransandD.nasuta.IncontrasttoclinalvariationforbodymelanizationinD.immigrans,cuticularlipidmassshowedapositiveclineinD.nasutaacrossalatitudinaltransect(10°46′–31°43′N).Basedonisofemalelinesvariability,bodymelanizationshowedpositivecorrelationwithdesiccationresistanceinD.immigransbutnotinD.nasuta.TheuseoforganicsolventshassupportedwaterproofingroleofcuticularlipidsinD.nasutabutnotinD.immigrans.Acomparativeanalysisofwaterbudgetofthesetwospeciesshowedthathigherwatercontent,reducedrateofwaterlossandgreaterdehydrationtoleranceconferhigherdesiccationresistanceinD.immigranswhilethereducedrateofwaterlossistheonlypossIBLemechanismtoenhancedesiccationtoleranceinD.nasuta.Wefoundthatcarbohydratesactasmetabolicfuelduringdesiccationstressinboththespecies,whereastheirratesofutilizationdiffersignificantlybetweenthesetwospecies.Further,acclimationtodehydrationstressimproveddesiccationresistanceduetoincreaseinthelevelofcarbohydratesinD.immigransbutnotinD.nasuta.Thus,populationsofD.immigransandD.nasutahaveevolveddifferentwaterbalancemechanismsundersharedenvironmentalconditions.MultiplemeasuresofdesiccationresistanceinD.immigransbutreductioninwaterlossinD.nasutaareconsistentwiththeirdifferentlevelsofadaptiveresponsestowetanddryconditionsontheIndiansubcontinent.Sex-specificdifferencesinthephysiologicalbasisofwaterconservationofDrosophilahydeifromthewesternHimalayas.Parkash,R.,Singh,D.&Lambhod,C.(2014).CanadianJournalofZoology,92(6),545-555.LinktoArticleReadAbstractInthecosmopolitanfruitflyDrosophilahydei–Sturtevant1921(Diptera:Drosophilidae),therelativeabundanceofmalesissignificantlyhigherthanfemales,butthephysiologicalbasisofsuchsex-specificdifferencesarelargelyunknown.ForwildpopulationsofD.hydei,wefoundseasonalchanges(summerversusautumn)indesiccationrelatedtraitsbutinallseasonsthedesiccationtoleranceofmaleswashigherthanthatoffemales.Fordesiccationrelatedtraits,wetestedwhetherthermaldevelopmentalacclimationatthreetemperatures(17,21and28°C)matchedseasonalchangesobservedunderwildconditions.Malefliesshowedsignificantlyhighertraitvaluesfordesiccationresistance,cuticularlipidmass,hemolymph,carbohydratecontentanddehydrationtoleranceascomparedwithfemaleswhenrearedatlowerorhighertemperaturesdespitelackofsignificantsex-specificdifferencesinthetotalbodywatercontentoffliesrearedataparticulargrowthtemperature.Weobservedplasticchangesintheamountofcuticularlipidsconsistentwithcorrespondingdifferencesintherateofwaterloss.Treatmentofcuticularsurfacewithorganicsolvent(hexane)supportedtheroleofcuticularlipidsinaffectingtranscuticularwaterloss.WefoundsignificantthermalplasticeffectsfordesiccationrelatedtraitsofD.hydeibutthesexualdimorphismwasintheoppositedirectioni.e.malesweremoredesiccationresistantthanfemalesinD.hydeiwhilethereverseistrueformanyotherDrosophilaspecies(Diptera,Drosophilidae).Ourresultssuggestthatsex-specificdifferencesindesiccationresistancelevelofD.hydeiaregoodpredictorsofrelativeabundancelevelsofmaleandfemalefliesunderwildconditions.Divergentstrategyforadaptationtodroughtstressintwosiblingspeciesofmontiumspeciessubgroup:DrosophilakikkawaiandDrosophilaleontia.Ramniwas,S.&Kajla,B.(2012).JournalofInsectPhysiology,58(12),1525-1533.LinktoArticleReadAbstractDrosophilaleontia(warmadapted)hasbeenconsideredasasisterspeciesofDrosophilakikkawai(sub-cosmopolitan)withaverysimilarmorphology.Wefounddivergentstrategiesforcopingwithdesiccationstressinthesetwospeciesofmontiumsubgroup.Interestingly,incontrasttoclinalvariationforbodymelanizationinD.kikkawai,cuticularlipidmassshowedapositiveclineinD.leontiaacrossalatitudinaltransect.Onthebasisofisofemalelineanalysis,withinpopulationtraitvariabilityincuticularlipidmassperflyispositivelycorrelatedwithdesiccationresistanceandnegativelycorrelatedwithcuticularwaterlossinD.leontia.AcomparativeanalysisofwaterbudgetofthesetwospeciesshowedthathigheraBDominalmelanization,reducedrateofwaterlossandgreaterdehydrationtoleranceconferhigherdesiccationresistanceinD.kikkawaiwhilethereducedrateofwaterlossistheonlypossiblemechanismtoenhancedesiccationtoleranceinD.leontia.TheuseoforganicsolventshassupportedwaterproofingroleofcuticularlipidsinD.leontiabutnotinD.kikkawai.Thus,wemaysuggestthatbodymelanizationandcuticularlipidsmayrepresentalternativestrategiesforcopingwithdehydrationstressinmelanicversusnon-melanicdrosophilids.Inboththesespecies,carbohydrateswereutilizedunderdesiccationstressbutahigherlevelofstoredcarbohydrateswasevidentinD.kikkawai.Further,wefoundincreasedesiccationresistanceinD.kikkawaithroughacclimationwhileD.leontialackssucharesponse.Thus,speciesspecificdivergenceinwaterbalancerelatedtraitsinthesespeciesareconsistentwiththeiradaptationstowetanddryhabitats.RapideffectsofhumidityacclimationonstressresistanceinDrosophilamelanogaster.Aggarwal,D.D.,Ranga,P.,Kalra,B.,Parkash,R.,Rashkovetsky,E.&Bantis,L.E.(2013).ComparativeBiochemistryandPhysiologyPartA:Molecular&IntegrativePhysiology,166(1),81-90.LinktoArticleReadAbstractWetestedthehypothesiswhetherdevelopmentalacclimationatecologicallyrelevanthumidityregimes(40%and75%RH)affectsdesiccationresistanceofpre-adults(3rdinstarlarvae)andadultsofDrosophilamelanogasterMeigen(Diptera:Drosophilidae).Additionally,weuntangledwhetherdrought(40%RH)acclimationaffectscold-toleranceintheadultsofD.melanogaster.Weobservedthatlowhumidity(40%RH)acclimatedindividualssurvivedsignificantlylonger(1.6-fold)underlethallevelsofdesiccationstress(0–5%RH)thantheircounter-replicatesacclimatedat75%RH.Incontrasttoafasterdurationofdevelopmentof1stand2ndinstarlarvae,3rdinstarlarvaeshowedadelayeddevelopmentat40%RHascomparedtotheircounterpartsgrownat75%RH.Rearingtolowhumidityconferredanincreaseinbulkwater,hemolymphcontentanddehydrationtolerance,consistentwithincreaseindesiccationresistanceforreplicatesgrownat40%ascomparedtotheircounterpartsat75%RH.Further,wefoundatrade-offbetweenthelevelsofcarbohydratesandbodylipidreservesat40%and75%RH.Higherlevelsofcarbohydratessustainedlongersurvivalunderdesiccationstressforindividualsdevelopedat40%RHthantheircongenersat75%RH.However,therateofcarbohydrateutilizationdidnotdifferbetweentheindividualsrearedatthesecontrastinghumidityregimes.Interestingly,ourresultsofacceleratedfailuretime(AFT)modelsshowedsubstantialdecreaseddeathratesataseriesoflowtemperatures(0,−2,or−4°C)forreplicatesacclimatedat40%RHascomparedtotheircounter-partsat75%RH.Therefore,ourfindingsindicatethatdevelopmenttolowhumidityconditionsconstrainedonmultiplephysiologicalmechanismsofwater-balance,andconferredcross-tolerancetowardsdesiccationandcoldstressinD.melanogaster.Finally,wesuggestthattheabilityofgeneralistDrosophilaspeciestotoleratefluctuationsinhumiditymightaidintheirexistenceandabundanceunderexpectedchangesinmoisturelevelincourseofglobalclimatechange.UV-methodforthedeterminationofTrehaloseandD-Glucoseinfoodstuffs,beverages,andothermaterialsPrinciple:             (trehalase)(1)Trehalose+H2O→2xD-glucose              (hexokinase)(2)D-Glucose+ATP→G-6-P+ADP   (glucose-6-phosphatedehydrogenase)(3)G-6-P+NADP+→gluconate-6-phosphate+NADPH+H+Kitsize:                         *100assays(manual)/1000(microplate)                                          /1100(auto-analyser)* Thenumberofmanualtestsperkitcanbedoubledifallvolumesarehalved. ThiscanbereadilyaccommodatedusingtheMegaQuantTM WaveSpectrophotometer(D-MQWAVE).Method:                          Spectrophotometricat340nmReactiontime:                 ~10minDetectionlimit:                37.5mg/LApplicationexamples:Honey,mushrooms,bread,beer,seafood(e.g.lobsterandshrimp),fruitjuices,pureesandfillings,nutritionbars,surimi,dehydratedfruitsandvegetables,fruitproducts,whitechocolate,sportsdrinks,dairyproducts,eggproducts,soupsandsauces,confectionery,chewinggum,cosmetics,pharmaceuticalsandothermaterials(e.g.biologicalcultures,samples,etc.)Methodrecognition:     NovelmethodAdvantagesOnlyenzymatickitavailable Verycosteffective Allreagentsstablefor>2yearsafterpreparation Veryrapidreaction Mega-Calc™softwaretoolisavailablefromourwebsiteforhassle-freerawdataprocessing Standardincluded Suitableformanual,microplateandauto-analyserformats

Megazyme品牌产品简介

来源:作者:人气:2149发表时间:2016-05-19 10:59:00【  
Megazyme检测试剂盒 - 用于食品、饲料、乳制品、葡萄酒分析
Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
Megazyme检测试剂盒产品◆ 检测试剂盒
◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号 中文品名 用途
K-ACETAF 乙酸[AF法]检测试剂盒 酶法定量分析乙酸最广泛使用的方法
K-ACHDF 可吸收糖/膳食纤维检测试剂盒 酒精沉淀法测定膳食纤维
K-AMIAR 氨快速检测试剂盒 用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。
K-AMYL 直链淀粉/支链淀粉检测试剂盒 谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测
K-ARAB 阿拉伯聚糖检测试剂盒 果汁浓缩液中阿拉伯聚糖的检测
K-ASNAM L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒 用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析
K-ASPTM 阿斯巴甜检测试剂盒 专业用于测定饮料和食品中阿斯巴甜含量,操作简单
K-BETA3 β-淀粉酶检测试剂盒 适用于麦芽粉中β-淀粉酶的测定
K-BGLU 混合键β-葡聚糖检测试剂盒 测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量
K-CERA α-淀粉酶检测试剂盒 谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定
K-CITR 柠檬酸检测试剂盒 快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量
K-DLATE 乳酸快速检测试剂盒 快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量
K-EBHLG 酵母β-葡聚糖酶检测试剂盒 用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖
K-ETSULPH 总亚硫酸检测试剂盒 测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法
K-FRGLMQ D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒 适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。
K-FRUC 果聚糖检测试剂盒 含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。
K-FRUGL D-果糖/D-葡萄糖检测试剂盒 对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。
K-GALM 半乳甘露聚糖检测试剂盒 食品和植物产品中半乳甘露聚糖的含量检测
K-GLUC D-葡萄糖[GOPOD]检测试剂盒 谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUHK D-葡萄糖[HK]检测试剂盒 植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUM 葡甘聚糖检测试剂盒 植物和食品中葡甘聚糖的含量测定。
K-INTDF 总膳食纤维检测试剂盒 总膳食纤维特定检测和分析
K-LACGAR 乳糖/D-半乳糖快速检测试剂盒 用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖
K-LACSU 乳糖/蔗糖/D-葡萄糖检测试剂盒 混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定
K-LACTUL 乳果糖检测试剂盒 特异性、快速和灵敏测量奶基样品中乳果糖含量
K-MANGL D-甘露糖/D-果糖/D-葡萄糖检测试剂盒 适合测定植物产品和多糖酸性水解产物中D-甘露糖含量
K-MASUG 麦芽糖/蔗糖/D-葡萄糖检测试剂盒 在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测
K-PECID 胶质识别检测试剂盒 食品配料中果胶的鉴别
K-PHYT 植酸(总磷)检测试剂盒 食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析
K-PYRUV 丙酮酸检测试剂盒 在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析
K-RAFGA 棉子糖/D-半乳糖检测试剂盒 快速测量植物材料和食品中棉子糖和半乳糖含量
K-RAFGL 棉子糖/蔗糖/D-半乳糖检测试剂盒 分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定
K-SDAM 淀粉损伤检测试剂盒 谷物面粉中淀粉损伤的检测和分析
K-SUCGL 蔗糖/D-葡萄糖检测试剂盒 饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析
K-SUFRG 蔗糖/D-果糖/D-葡萄糖检测试剂盒 适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定
K-TDFR 总膳食纤维检测试剂盒 总膳食纤维检测
K-TREH 海藻糖检测试剂盒 快速、可靠地检测食品、饮料和其它物料中海藻糖含量
K-URAMR 尿素/氨快速检测试剂盒 适用于水、饮料、乳制品和食品中尿素和氨的快速测定
K-URONIC D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒 简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸)
K-XYLOSE D-木糖检测试剂盒 简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量
K-YBGL Beta葡聚糖[酵母和蘑菇]检测试剂盒 检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量
客服在线
service-logo
已有 人查看该问题
tel
全国免费服务热线
4000-520-616
微信公众号
关注我们
手机扫码,关注动态